scispace - formally typeset
Search or ask a question
Author

J. Fraser Stoddart

Bio: J. Fraser Stoddart is an academic researcher from Northwestern University. The author has contributed to research in topics: Catenane & Supramolecular chemistry. The author has an hindex of 147, co-authored 1239 publications receiving 96083 citations. Previous affiliations of J. Fraser Stoddart include Zhejiang University & Northwest University (United States).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of mono-and difunctionalized [2] catenanes, incorporating a bipyridinium-based cyclophane component interlocked with a dioxyarene-based macrocyclic polyether, have been self-assembled.
Abstract: A series of mono- and difunctionalized [2]catenanes, incorporating a bipyridinium-based cyclophane component interlocked with a dioxyarene-based macrocyclic polyether, have been self-assembled. The methodology relies upon the complementarity between the π-electron-deficient and the π-electron-rich macrocyclic components. Hydrogen-bonding interactions between the acidic hydrogen atoms on the bipyridinium units and the polyether oxygen atoms, as well as π-π stacking and edge-to-face T-type interactions between the complementary aromatic units, are responsible for these self-assembly processes. These [2]catenanes have been designed in order to locate one reactive functional group-either a hydroxyl group or a carboxylic acid function-onto one or both macrocyclic components. In principle, polymerization or copolymerization of these monomeric [2]catenanes can be realized by condensations at the reactive functional groups to generate main-chain, side-chain, and dendritic polycatenanes. Indeed, the versatility of this design logic has been demonstrated by some preliminary experiments. A main-chain oligo[2]catenane incorporating 17 repeating units connected by urethane linkages was synthesized by the condensation of a monomeric difunctionalized [2]catenane bearing one hydroxymethyl group on each of its two macrocyclic components with a diisocyanate derivative. The geometries adopted in the solid state by some of the monomeric [2]catenanes were examined by single-crystal X-ray analyses. Interestingly, in the case of a monofunctionalized [2]catenane bearing one carboxylic acid group on its π-electron-rich macrocyclic component, pseudobis[2]catenanes are observed in the solid state as a result of the formation of hydrogen-bonded dimers between the carboxylic acid groups of adjacent molecules.

60 citations

Journal ArticleDOI
TL;DR: The metal-organic framework in SALEM-14 prevents "intermolecular" olefin metathesis from occurring between the pillars in the presence of the first generation Hoveyda-Grubbs catalyst, while favoring the production of a PAH, which can be released from the framework under acidic conditions in dimethylsulfoxide.
Abstract: The aromatizing ring-closing metathesis has been shown to take place inside an extended porous framework. Employing a combination of solvent-assisted linker exchange and postsynthesis modification using olefin metathesis, the noninterpenetrated SALEM-14 was formed and converted catalytically into PAH-MOF-1 with polycyclic aromatic hydrocarbon (PAH) pillars. The metal–organic framework in SALEM-14 prevents “intermolecular” olefin metathesis from occurring between the pillars in the presence of the first generation Hoveyda–Grubbs catalyst, while favoring the production of a PAH, which can be released from the framework under acidic conditions in dimethylsulfoxide.

60 citations

Journal ArticleDOI
TL;DR: The electroanalytical approach described in this Communication promotes the assembly of cyclobis(paraquat-p-phenylene) rings along a positively charged oligomeric chain, providing easy access to the formation of multiple mechanical bonds by means of a controlled supply of electricity.
Abstract: Artificial molecular machines can be operated using either physical or chemical inputs. Light-powered motors display clean and autonomous operations, whereas chemically driven machines generate waste products and are intermittent in their motions. Herein, we show that controlled changes in applied electrochemical potentials can drive the operation of artificial molecular pumps in a semi-autonomous manner-that is, without the need for consecutive additions of chemical fuel(s). The electroanalytical approach described in this Communication promotes the assembly of cyclobis(paraquat-p-phenylene) rings along a positively charged oligomeric chain, providing easy access to the formation of multiple mechanical bonds by means of a controlled supply of electricity.

60 citations

Journal ArticleDOI
TL;DR: Investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetrahedral cyclophanes.
Abstract: Artificial photosynthetic systems for solar energy conversion exploit both covalent and supramolecular chemistry to produce favorable arrangements of light-harvesting and redox-active chromophores in space. An understanding of the interplay between key processes for photosynthesis, namely light-harvesting, energy transfer, and photoinduced charge separation and the design of novel, self-assembling components capable of these processes are imperative for the realization of multifunctional integrated systems. We report our investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications. We show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetracationic cyclophanes. Spectroscopic techniques confirm energy transfer between the extended tetracationic cyclophanes and perylene diimide is ultrafast and quantitative, while the heterocycle specifically influences the energy transfer related parameters and the acceptor excited state.

59 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations