scispace - formally typeset
Search or ask a question
Author

J.G. Snijders

Other affiliations: Indian Institute of Science
Bio: J.G. Snijders is an academic researcher from University of Groningen. The author has contributed to research in topics: Density functional theory & Time-dependent density functional theory. The author has an hindex of 10, co-authored 12 publications receiving 8104 citations. Previous affiliations of J.G. Snijders include Indian Institute of Science.

Papers
More filters
Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: In this article, a new charge analysis is presented that gives an accurate description of the electrostatic potential from the charge distribution in molecules, which is achieved in three steps: first, the total density is written as a sum of atomic densities; next, a set of atomic multipoles are defined; finally, these atomic multipole are reconstructed exactly by distributing charges over all atoms.
Abstract: A new charge analysis is presented that gives an accurate description of the electrostatic potential from the charge distribution in molecules. This is achieved in three steps: first, the total density is written as a sum of atomic densities; next, from these atomic densities a set of atomic multipoles is defined; finally, these atomic multipoles are reconstructed exactly by distributing charges over all atoms. The method is generally applicable to any method able to provide atomic multipole moments, but in this article we take advantage of the way the electrostatic potential is calculated within the Density Functional Theory framework. We investigated a set of 31 molecules as well as all amino acid residues to test the quality of the method, and found accurate results for the molecular multipole moments directly from the DFT calculations. The deviations from experimental values for the dipole/quadrupole moments are also small. Finally, our Multipole Derived Charges reproduce both the atomic and molecular multipole moments exactly. c 2000 John Wiley & Sons, Inc. J Comput Chem 22: 79-88, 2001

168 citations

Journal ArticleDOI
TL;DR: In this article, time-dependent density functional theory (TDDFT) calculations of excited state polarizabilities of conjugated molecules are presented, and the increase in polarizability upon excitation was obtained by evaluating the dependence of the excitation energy on an applied static electric field.
Abstract: In this paper, time-dependent density functional theory (TDDFT) calculations of excited state polarizabilities of conjugated molecules are presented. The increase in polarizability upon excitation was obtained by evaluating the dependence of the excitation energy on an applied static electric field. The excitation energy was found to vary quadratically with the field strength. The excess polarizabilities obtained for singlet excited states are in reasonable agreement with the experimental results for the shorter oligomers, particularly if the experimental uncertainties are considered. For longer oligomers the excess polarizability is considerably overestimated, similar to DFT calculations of ground state polarizabilities. Excess polarizabilities of triplet states were found to be smaller than those for the corresponding singlet state, which agrees with experimental results that are available for triplet polarizabilities. Negative polarizabilities are obtained for the lowest singlet Ag states of longer oligomers. The polarizability of the lowest Bu and Ag excited states of the conjugated molecules studied here are determined mainly by the interaction between these two states. Upon application of a static electric field a quadratic Stark effect is observed in which the lower Bu state has a positive excess polarizability and the upper Ag state exhibits a decrease in polarizability upon excitation. All results are explained in terms of a sum-over-states description for the polarizability.

83 citations

Journal ArticleDOI
TL;DR: In this article, the third and fifth-order time-domain Raman responses of liquid carbon disulfide have been calculated, taking local field effects into account through the dipole-induced dipole approximation to the polarizability.
Abstract: The third- and fifth-order time-domain Raman responses of liquid carbon disulfide have been calculated, taking local field effects into account through the dipole-induced dipole approximation to the polarizability. The third-order response is shown to be in excellent agreement with experimental data. The calculated two-dimensional shape of the fifth-order response is compared with recently reported experimental observations of what is claimed to be pure fifth-order response. Considerable discrepancies are observed which might be explained by contamination of the experimental results with sequential and especially parallel third-order cascaded Raman response. A new choice of polarization conditions is proposed, which increases the discrimination against these unwanted cascading effects, as compared to the previously discussed fully polarized and magic angle conditions.

77 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach to calculate optical spectra was presented, which for the first time uses a polarization dependent functional within current density functional theory, which was proposed by Vignale and Kohn [Phys. Rev. Lett. 77, 2037].
Abstract: In this paper we present a new approach to calculate optical spectra, which for the first time uses a polarization dependent functional within current density functional theory (CDFT), which was proposed by Vignale and Kohn [Phys. Rev. Lett. 77, 2037 (1996)]. This polarization dependent functional includes exchange-correlation (xc) contributions in the effective macroscopic electric field. This functional is used to calculate the optical absorption spectrum of several common semiconductors. We achieved in all cases good agreement with experiment.

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The M06-2X meta-exchange correlation function is proposed in this paper, which is parametrized including both transition metals and nonmetals, and is a high-non-locality functional with double the amount of nonlocal exchange.
Abstract: We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.

22,326 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: The cclib platform as discussed by the authors is a platform for the development of package-independent computational chemistry algorithms, which can automatically detect, parse, and convert the extracted information into a standard internal representation.
Abstract: There are now a wide variety of packages for electronic structure calculations, each of which differs in the algorithms implemented and the output format. Many computational chemistry algorithms are only available to users of a particular package despite being generally applicable to the results of calculations by any package. Here we present cclib, a platform for the development of package-independent computational chemistry algorithms. Files from several versions of multiple electronic structure packages are automatically detected, parsed, and the extracted information converted to a standard internal representation. A number of population analysis algorithms have been implemented as a proof of principle. In addition, cclib is currently used as an input filter for two GUI applications that analyze output files: PyMOlyze and GaussSum. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008

4,451 citations

Journal ArticleDOI
TL;DR: The new local density functional, called M06-L, is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit.
Abstract: We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed. © 2006 American Institute of Physics. DOI: 10.1063/1.2370993

4,154 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare the theoretical and practical aspects of the two approaches and their specific numerical implementations, and present an overview of accomplishments and work in progress, as well as a comparison of both the Green's functions and the TDDFT approaches.
Abstract: Electronic excitations lie at the origin of most of the commonly measured spectra. However, the first-principles computation of excited states requires a larger effort than ground-state calculations, which can be very efficiently carried out within density-functional theory. On the other hand, two theoretical and computational tools have come to prominence for the description of electronic excitations. One of them, many-body perturbation theory, is based on a set of Green’s-function equations, starting with a one-electron propagator and considering the electron-hole Green’s function for the response. Key ingredients are the electron’s self-energy S and the electron-hole interaction. A good approximation for S is obtained with Hedin’s GW approach, using density-functional theory as a zero-order solution. First-principles GW calculations for real systems have been successfully carried out since the 1980s. Similarly, the electron-hole interaction is well described by the Bethe-Salpeter equation, via a functional derivative of S. An alternative approach to calculating electronic excitations is the time-dependent density-functional theory (TDDFT), which offers the important practical advantage of a dependence on density rather than on multivariable Green’s functions. This approach leads to a screening equation similar to the Bethe-Salpeter one, but with a two-point, rather than a four-point, interaction kernel. At present, the simple adiabatic local-density approximation has given promising results for finite systems, but has significant deficiencies in the description of absorption spectra in solids, leading to wrong excitation energies, the absence of bound excitonic states, and appreciable distortions of the spectral line shapes. The search for improved TDDFT potentials and kernels is hence a subject of increasing interest. It can be addressed within the framework of many-body perturbation theory: in fact, both the Green’s functions and the TDDFT approaches profit from mutual insight. This review compares the theoretical and practical aspects of the two approaches and their specific numerical implementations, and presents an overview of accomplishments and work in progress.

3,195 citations