scispace - formally typeset
Search or ask a question
Author

J. Garay Garcia

Other affiliations: Ikerbasque
Bio: J. Garay Garcia is an academic researcher from University of the Basque Country. The author has contributed to research in topics: Large Hadron Collider & Standard Model. The author has an hindex of 81, co-authored 348 publications receiving 23275 citations. Previous affiliations of J. Garay Garcia include Ikerbasque.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Ece Aşılar1  +2212 moreInstitutions (157)
TL;DR: A fully-fledged particle-flow reconstruction algorithm tuned to the CMS detector was developed and has been consistently used in physics analyses for the first time at a hadron collider as mentioned in this paper.
Abstract: The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic τ decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8\TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions.

719 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2283 moreInstitutions (141)
TL;DR: Combined fits to CMS UE proton–proton data at 7TeV and to UEProton–antiproton data from the CDF experiment at lower s, are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13.
Abstract: New sets of parameters ("tunes") for the underlying-event (UE) modeling of the PYTHIA8, PYTHIA6 and HERWIG++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE data at sqrt(s) = 7 TeV and to UE data from the CDF experiment at lower sqrt(s), are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13 TeV. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan (q q-bar to Z / gamma* to lepton-antilepton + jets) observables at 7 and 8 TeV are presented, as well as predictions of MB and UE observables at 13 TeV.

686 citations

Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam  +2134 moreInstitutions (142)
TL;DR: The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays, and no significant deviations are found.
Abstract: Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include gamma gamma, ZZ, WW, tau tau, bb, and mu mu pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 inverse femtobarns at 7 TeV and up to 19.7 inverse femtobarns at 8 TeV. From the high-resolution gamma gamma and ZZ channels, the mass of the Higgs boson is determined to be 125.02 +0.26 -0.27 (stat) +0.14 -0.15 (syst) GeV. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 +/- 0.09 (stat) +0.08 -0.07 (theo) +/- 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.

677 citations

Journal ArticleDOI
TL;DR: In this paper, the trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions.
Abstract: This paper describes the CMS trigger system and its performance during Run 1 of the LHC. The trigger system consists of two levels designed to select events of potential physics interest from a GHz (MHz) interaction rate of proton-proton (heavy ion) collisions. The first level of the trigger is implemented in hardware, and selects events containing detector signals consistent with an electron, photon, muon, tau lepton, jet, or missing transverse energy. A programmable menu of up to 128 object-based algorithms is used to select events for subsequent processing. The trigger thresholds are adjusted to the LHC instantaneous luminosity during data taking in order to restrict the output rate to 100 kHz, the upper limit imposed by the CMS readout electronics. The second level, implemented in software, further refines the purity of the output stream, selecting an average rate of 400 Hz for offline event storage. The objectives, strategy and performance of the trigger system during the LHC Run 1 are described.

532 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
TL;DR: In this article, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test is presented, which is based on LO, NLO and NNLO QCD theory and also includes electroweak corrections.
Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

2,028 citations