scispace - formally typeset
Search or ask a question
Author

J Guinard

Bio: J Guinard is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Cathodoluminescence & Nanowire. The author has an hindex of 2, co-authored 2 publications receiving 602 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Light emitting diodes based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed.
Abstract: Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal?organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour?liquid?solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro-?and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I?V characteristics of ZnO:P nanowire/ZnO:Ga p?n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.

606 citations

Journal ArticleDOI
TL;DR: Laterally strained areas of about 5 nm diameter were identified at the quantum well positions on top of the nanowires by high-resolution transmission electron microscopy, thus pointing to quantum-dot-like emission centers.
Abstract: MgZnO/ZnO quantum wells on top of ZnO nanowires were grown by pulsed laser deposition. Ensembles of spatially fluctuating and narrow cathodoluminescence peaks with single widths down to 1 meV were found at the spectral position of the quantum well emission at 4 K. In addition, the number of these narrow QW peaks increases with increasing excitation power in micro-photoluminescence, thus pointing to quantum-dot-like emission centers. Indeed, laterally strained areas of about 5 nm diameter were identified at the quantum well positions on top of the nanowires by high-resolution transmission electron microscopy.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications.

950 citations

Journal ArticleDOI
TL;DR: Light emitting diodes based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed.
Abstract: Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal?organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour?liquid?solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro-?and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I?V characteristics of ZnO:P nanowire/ZnO:Ga p?n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.

606 citations

Journal ArticleDOI
TL;DR: This review will discuss recent advances in important and/or controversial issues concerning ZnO properties and its applications, and areas where further improvements are needed.
Abstract: ZnO is a material which is of great interest for a variety of applications due to its unique properties and the availability of a variety of growth methods resulting in a number of different morphologies and a wide range of material properties of synthesized nanostructures. In this review, we will discuss recent advances in important and/or controversial issues concerning ZnO properties and its applications. We will also discuss areas where further improvements are needed, and in particular discuss the issues related to the environmental stability of ZnO and its implications on reproducibility of measurements and the toxicity of ZnO nanomaterials.

592 citations

Journal ArticleDOI
TL;DR: A review of publications on nanomaterials in the biennium 2008-2010 includes the most recent publications in risk assessment/toxicity, characterization and stability, toxicity, fate and transport of NMs in terrestrial ecosystems, and new ENMs.

522 citations

Journal ArticleDOI
04 Oct 2010-ACS Nano
TL;DR: The results show that the piezo-phototronic effect can enhance the detection sensitivity more than 5-fold for pW levels of light detection.
Abstract: We demonstrate the piezoelectric effect on the responsivity of a metalsemiconductormetal ZnO micro-/nanowire photodetector. The responsivity of the photodetector is respectively enhanced by 530%, 190%, 9%, and 15% upon 4.1 pW, 120.0 pW, 4.1 nW, and 180.4 nW UV light illumination onto the wire by introducing a0.36% compressive strain in the wire, which effectively tuned the Schottky barrier height at the contact by the produced local piezopotential. After a systematic study on the Schottky barrier height change with tuning of the strain and the excitation light intensity, an in-depth understanding is provided about the physical mechanism of the coupling of piezoelectric, optical, and semiconducting properties. Our results show that the piezo-phototronic effect can enhance the detection sensitivity more than 5-fold for pW levels of light detection.

441 citations