scispace - formally typeset
J

J. Guiraud

Researcher at University of Barcelona

Publications -  22
Citations -  10384

J. Guiraud is an academic researcher from University of Barcelona. The author has contributed to research in topics: Astrometry & Milky Way. The author has an hindex of 14, co-authored 22 publications receiving 7797 citations.

Papers
More filters
Journal ArticleDOI

The Gaia mission

T. Prusti, +624 more
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Journal ArticleDOI

Gaia Data Release 1 Summary of the astrometric, photometric, and survey properties

Anthony G. A. Brown, +590 more
TL;DR: The first Gaia data release, Gaia DR1 as discussed by the authors, consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues.
Journal ArticleDOI

Gaia Data Release 2: Observational Hertzsprung-Russell diagrams

C. Babusiaux, +451 more
TL;DR: In this article, the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD) was highlighted, depending in particular on stellar population selections.
Journal ArticleDOI

Gaia Data Release 2. Observations of solar system objects

Federica Spoto, +501 more
TL;DR: In this paper, the authors describe the processing of the Gaia DR2 data, and describe the criteria used to select the sample published in Gaia DR 2, and explore the data set to assess its quality.
Journal ArticleDOI

Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way

Amina Helmi, +484 more
TL;DR: In this paper, the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way is demonstrated. But the accuracy of the errors, statistical and systematic, are relatively well understood.