scispace - formally typeset
Search or ask a question
Author

J. H. Eaton

Bio: J. H. Eaton is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Probabilistic logic & Probabilistic-based design optimization. The author has an hindex of 1, co-authored 1 publications receiving 108 citations.

Papers
More filters

Cited by
More filters
Book
01 Jan 1970
TL;DR: A reverse-flow technique is described for the solution of a functional equation arising in connection with a decision process in which the termination time is defined implicitly by the condition that the process stops when the system under control enters a specified set of states in its state space.
Abstract: By decision-making in a fuzzy environment is meant a decision process in which the goals and/or the constraints, but not necessarily the system under control, are fuzzy in nature. This means that the goals and/or the constraints constitute classes of alternatives whose boundaries are not sharply defined. An example of a fuzzy constraint is: “The cost of A should not be substantially higher than α,” where α is a specified constant. Similarly, an example of a fuzzy goal is: “x should be in the vicinity of x0,” where x0 is a constant. The italicized words are the sources of fuzziness in these examples. Fuzzy goals and fuzzy constraints can be defined precisely as fuzzy sets in the space of alternatives. A fuzzy decision, then, may be viewed as an intersection of the given goals and constraints. A maximizing decision is defined as a point in the space of alternatives at which the membership function of a fuzzy decision attains its maximum value. The use of these concepts is illustrated by examples involving multistage decision processes in which the system under control is either deterministic or stochastic. By using dynamic programming, the determination of a maximizing decision is reduced to the solution of a system of functional equations. A reverse-flow technique is described for the solution of a functional equation arising in connection with a decision process in which the termination time is defined implicitly by the condition that the process stops when the system under control enters a specified set of states in its state space.

6,919 citations

Journal ArticleDOI
01 Jan 1972
TL;DR: In this paper, it was shown that under certain conditions a precise control goal can be attained with fuzzy observation and control as long as the observations become sufficiently precise when the goal is approached.
Abstract: A fuzzy mapping from X to Y is a fuzzy set on X × Y. The concept is extended to fuzzy mappings of fuzzy sets on X to Y, fuzzy function and its inverse, fuzzy parametric functions, fuzzy observation, and control. Set theoretical relations are obtained for fuzzy mappings, fuzzy functions, and fuzzy parametric functions. It is shown that under certain conditions a precise control goal can be attained with fuzzy observation and control as long as the observations become sufficiently precise when the goal is approached.

741 citations

Book
01 Aug 1996
TL;DR: It is shown that under certain conditions a precise control goal can be attained with fuzzy observation and control as long as the observations become sufficiently precise when the goal is approached.
Abstract: A fuzzy mapping from X to Y is a fuzzy set on X × Y. The concept is extended to fuzzy mappings of fuzzy sets on X to Y, fuzzy function and its inverse, fuzzy parametric functions, fuzzy observation, and control. Set theoretical relations are obtained for fuzzy mappings, fuzzy functions, and fuzzy parametric functions. It is shown that under certain conditions a precise control goal can be attained with fuzzy observation and control as long as the observations become sufficiently precise when the goal is approached.

730 citations

Journal ArticleDOI
TL;DR: A stochastic version of the classical shortest path problem whereby for each node of a graph, the authors must choose a probability distribution over the set of successor nodes so as to reach a certain destination node with minimum expected cost is considered.
Abstract: We consider a stochastic version of the classical shortest path problem whereby for each node of a graph, we must choose a probability distribution over the set of successor nodes so as to reach a certain destination node with minimum expected cost. The costs of transition between successive nodes can be positive as well as negative. We prove natural generalizations of the standard results for the deterministic shortest path problem, and we extend the corresponding theory for undiscounted finite state Markovian decision problems by removing the usual restriction that costs are either all nonnegative or all nonpositive.

578 citations

Journal ArticleDOI
TL;DR: A taxonomy of search problems is provided that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment and highlights current open problems in the area and explores avenues for future work.
Abstract: This paper surveys recent results in pursuit-evasion and autonomous search relevant to applications in mobile robotics. We provide a taxonomy of search problems that highlights the differences resulting from varying assumptions on the searchers, targets, and the environment. We then list a number of fundamental results in the areas of pursuit-evasion and probabilistic search, and we discuss field implementations on mobile robotic systems. In addition, we highlight current open problems in the area and explore avenues for future work.

505 citations