scispace - formally typeset
Search or ask a question
Author

J. H. Evers

Bio: J. H. Evers is an academic researcher. The author has contributed to research in topics: Adaptive control & Automatic control. The author has an hindex of 2, co-authored 2 publications receiving 201 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the assumptions, benefits, and limitations of recent applications of nonlinear filtering, adaptive filtering, modern control, adaptive control, dual control, differential game theory, and modern control design techniques to the air-to-air missile problem are discussed.
Abstract: Current air-to-air missile guidance and control technology is assessed. Areas explored include target state estimation, advanced guidance laws, and bank-to-turn autopilots. The assumptions, benefits, and limitations of recent applications of nonlinear filtering, adaptive filtering, modern control, adaptive control, dual control, differential game theory, and modern control design techniques to the air-to-air missile problem are discussed. >

146 citations

Proceedings ArticleDOI
15 Jun 1988
TL;DR: In this paper, the assumptions, benefits, and limitations of recent applications of nonlinear filtering, adaptive filtering, modern control, adaptive control, dual control, differential game theory, and modern control design techniques to the air-to-air missile problem are discussed.
Abstract: This paper provides an assessment of current air-to-air missile guidance and control technology. Areas explored include target state estimators, advanced guidance laws, and bank-to-turn autopilots. The assumptions, benefits, and limitations of recent applications of nonlinear filtering, adaptive filtering, modern control, adaptive control, dual control, differential game theory, and modern control design techniques to the air-to-air missile problem are discussed.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive and up-to-date survey of the techniques for tracking maneuvering targets without addressing the measurement-origin uncertainty is presented in this article, including 2D and 3D maneuver models as well as coordinate-uncoupled generic models for target motion.
Abstract: This is the first part of a comprehensive and up-to-date survey of the techniques for tracking maneuvering targets without addressing the so-called measurement-origin uncertainty. It surveys various mathematical models of target motion/dynamics proposed for maneuvering target tracking, including 2D and 3D maneuver models as well as coordinate-uncoupled generic models for target motion. This survey emphasizes the underlying ideas and assumptions of the models. Interrelationships among models and insight to the pros and cons of models are provided. Some material presented here has not appeared elsewhere.

1,897 citations

BookDOI
01 Jan 1998

326 citations

Journal ArticleDOI
TL;DR: In this paper, a new form of the Proportional Navigation (PN) guidance law for short-range homing missiles is proposed, which is derived by invoking slidingmode control theory and is structured around the basic PN, with an additive switched bias term.
Abstract: A new form of the Proportional Navigation (PN) guidance law for short-range homing missiles is proposed. Named the Switched Bias Proportional Navigation (SBPN) law, it is derived by invoking sliding-mode control theory and is structured around the basic PN, with an additive switched bias term. This additional term depends only on the polarity of the line-of-sight rate, which is readily available with a seeker. It is shown that the bias term acts as an estimate of the target acceleration and other unmodeled dynamics. An adaptive procedure is suggested to select the gain of this term, which results in improved performance. The SBPN is almost as simple to implement as the PN law itself, as it does not require any additional information related to the engagement, in the form of either measurements or estimates. Simulation results show that the acceleration profiles of SBPN closely follow those of augmented PN guidance law, after a short initial transient. They further demonstrate the robustness of the proposed SBPN in the presence of missile velocity variation.

139 citations

Book ChapterDOI
01 Jan 2009
TL;DR: In this paper, the authors consider the concept of guided motion control for marine vehicles, in particular focusing on underactuated marine surface vehicles, and define the control objectives associated with each scenario as work-space tasks instead of configurationspace tasks.
Abstract: A mix between a monograph and an article collection, this PhD thesis considers the concept of guided motion control for marine vehicles, in particular focusing on underactuated marine surface vehicles. The motion control scheme is defined to involve the combination of a guidance system which issues meaningful velocity commands with a velocity control system which has been specifically designed to take vehicle maneuverability and agility constraints into account when fulfilling these commands such that a given motion control objective can be achieved in a controlled and feasible manner without driving the vehicle actuators to saturation. Furthermore, motion control scenarios are classified in a novel way according to whether they involve desired motion which has been defined a priori or not. Consequently, in addition to the classical scenarios of point stabilization, trajectory tracking, path following and maneuvering, the so-called target tracking scenario is considered. The resulting scenarios then involve target tracking, path following, path tracking and path maneuvering. In addition, it is proposed to define the control objectives associated with each scenario as work-space tasks instead of configurationspace tasks. Such a choice seems better suited for practical applications, since most vehicles operate in an underactuated configuration exposed to some kind of environmental disturbances. The thesis also proposes a novel mechanization of constant bearing guidance, which is a classical guidance principle well-known in the guided missile literature. This suggestion is motivated by a need to solve the target tracking motion control objective for marine vehicles. The proposed implementation enables explicit specification of the transient rendezvous behavior toward the target by selection of two intuitive tuning parameters. In addition, a singularity-free guidance law applicable to path following scenarios involving regularly parameterized paths which do not need to be arc-length parameterized is proposed. An extension to this guidance law is also suggested in order to enable off-path traversing of regularly parameterized paths for formation control purposes. A novel velocity control system which inherently takes maneuverability, agility and actuator constraints into account is developed for the purpose of controlling underactuated marine vehicles moving at high speed. The system is derived through a design method which involves a control-oriented modeling approach and requires a minimum of system identification tests to be carried out. The thesis also gives a novel overview of the major developments in marine control systems as seen from a Norwegian perspective. The development can be viewed as three waves of control, where the first wave concerned development of novel ship automation technology in the 1960s and 1970s, the second wave involved development of unique dynamic positioning systems in the 1970s and 1980s, while the third wave is expected to encompass the development of unmanned vehicle technology for a large number of maritime applications. A summary of the historical development, present status and future possibilities associated with unmanned surface vehicles (USVs) is also given. Current Norwegian activities are particularly emphasized. Furthermore, an overview of the main formation control concepts applicable to marine surface vehicles is given. A novel formation control functionality named coordinated target tracking is subsequently suggested within a leader-follower framework. Employing a guided motion control system using the suggested mechanization of constant bearing guidance, this functionality is then implemented for two different types of underactuated USVs such that they are able to move in formation with a leader vessel which can maneuver freely without being constrained to any predefined motion pattern. In particular, excerpts from successful full-scale formation control experiments involving a manned leader vessel and the two USVs executing coordinated target tracking at high speed are presented. This functionality currently seems to be unique on a worldwide basis, providing a convenient plug-and-play formation control capability for manned leader vessels involved in maritime survey operations.

136 citations

Journal ArticleDOI
TL;DR: In this paper, a new adaptive nonlinear guidance law is proposed to compensate for the uncertainties in both target acceleration and control loop dynamics, which adopts the sliding mode control approach with adaptation for unknown bound of uncertainties.
Abstract: A new adaptive nonlinear guidance law is proposed here. The fourth order state equation for integrated guidance and control loop is formulated taking into consideration the target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. Using the normal form of state equation, an adaptive nonlinear guidance law is proposed to compensate for the uncertainties in both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation for unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem against target maneuver and the limited performance of control loop. We have provided the stability analyses and performed simulations comparing favorably our approach to the state of the art.

110 citations