scispace - formally typeset
Search or ask a question
Author

J.H. Guo

Bio: J.H. Guo is an academic researcher from China Agricultural University. The author has contributed to research in topics: Soil classification & Soil acidification. The author has an hindex of 1, co-authored 1 publications receiving 2079 citations.

Papers
More filters
Journal ArticleDOI
19 Feb 2010-Science
TL;DR: A meta-analysis of a regional acidification phenomenon in Chinese arable soils that is largely associated with higher N fertilization and higher crop production is presented, likely to threaten the sustainability of agriculture and affect the biogeochemical cycles of nutrients and also toxic elements in soils.
Abstract: Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly ( P + ) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H + per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H + per hectare per year) made a small contribution to the acidification of agricultural soils across China.

2,736 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations

Journal ArticleDOI
TL;DR: The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil.
Abstract: Crop productivity relies heavily on nitrogen (N) fertilization. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment; therefore, increasing plant N use efficiency (NUE) is essential for the development of sustainable agriculture. Plant NUE is inherently complex, as each step—including N uptake, translocation, assimilation, and remobilization—is governed by multiple interacting genetic and environmental factors. The limiting factors in plant metabolism for maximizing NUE are different at high and low N supplies, indicating great potential for improving the NUE of current cultivars, which were bred in well-fertilized soil. Decreasing environmental losses and increasing the productivity of crop-acquired N requires the coordination of carbohydrate and N metabolism to give high yields. Increasing both the grain and N harvest index to drive N acquisition and utilization are important approaches for breeding future high-NUE cultivars.

1,382 citations

Journal ArticleDOI
TL;DR: Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China, however, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates.
Abstract: China faces great challenges in protecting its soil from contamination caused by rapid industrialization and urbanization over the last three decades. Recent nationwide surveys show that 16% of the soil samples, 19% for the agricultural soils, are contaminated based on China’s soil environmental quality limits, mainly with heavy metals and metalloids. Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China. However, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates. Exceedance of the contaminant limits in food crops is widespread in some areas, especially southern China, due to elevated inputs of contaminants, acidic nature of the soil and crop species or cultivars prone to heavy metal accumulation. Minimizing the transfer of contaminants from soil to the food chain is a top priority. A number of options are proposed, including identification of the sources of contaminants to agricultural systems, minimization of contaminant inputs, reduction of heavy metal phytoavailability in soil with liming or other immobilizing materials, selection and breeding of low accumulating crop cultivars, adoption of appropriate water and fertilizer management, bioremediation, and change of land use to grow nonfood crops. Implementation of these strategies requires not only technological advances, but also social-economic evaluation and effective enforcement of environmental protection law.

1,357 citations

Journal ArticleDOI
23 Oct 2014-Nature
TL;DR: If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.
Abstract: In an experiment across China to test integrated soil–crop system management for rice, wheat and maize against current practice, improvements in grain yield are equivalent to high-input techniques, but nutrient use, nutrient loss and greenhouse gas emissions are lower than current practice. Integrated soil–crop system management is a technique that aims to maximize yield and minimize environmental impact by adapting cropping systems to local conditions through optimal nutrient application, seasonal timing and the use of the best crop varieties. Fusuo Zhang and colleagues report the results of a China-wide test of this technique for the three main cereal crops — rice, wheat and maize. In comparisons with current practice and high input techniques, the authors find that the integrated system achieves yield improvements equivalent to high input techniques but with lower nutrient use, nutrient loss and greenhouse gas emissions than those found with the current practice. Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs1,2. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil–crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha−1), 7.2 Mg ha−1 and 10.5 Mg ha−1 to 8.5 Mg ha−1, 8.9 Mg ha−1 and 14.2 Mg ha−1, respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment3 show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil–crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.

1,213 citations

Journal ArticleDOI
TL;DR: In this paper, a meta-analysis based on 107 datasets from 64 long-term trials from around the world revealed that mineral fertilizer application led to a 15.1% increase in the microbial biomass (Cmic) above levels in unfertilized control treatments.
Abstract: Increasing nutrient inputs into terrestrial ecosystems affect not only plant communities but also associated soil microbial communities. Studies carried out in predominantly unmanaged ecosystems have found that increasing nitrogen (N) inputs generally decrease soil microbial biomass; less is known about long-term impacts in managed systems such as agroecosystems. The objective of this paper was to analyze the responses of soil microorganisms to mineral fertilizer using data from long-term fertilization trials in cropping systems. A meta-analysis based on 107 datasets from 64 long-term trials from around the world revealed that mineral fertilizer application led to a 15.1% increase in the microbial biomass (Cmic) above levels in unfertilized control treatments. Mineral fertilization also increased soil organic carbon (Corg) content and our results suggest that Corg is a major factor contributing to the overall increase in Cmic with mineral fertilization. The magnitude of the effect of fertilization on Cmic was pH dependent. While fertilization tended to reduce Cmic in soils with a pH below 5 in the fertilized treatment, it had a significantly positive effect at higher soil pH values. Duration of the trial also affected the response of Cmic to fertilization, with increases in Cmic most pronounced in studies with a duration of at least 20 years. The input of N per se does not seem to negatively affect Cmic in cropping systems. The application of urea and ammonia fertilizers, however, can temporarily increase pH, osmotic potential and ammonia concentrations to levels inhibitory to microbial communities. Even though impacts of fertilizers are spatially limited, they may strongly affect soil microbial biomass and community composition in the short term. Long-term repeated mineral N applications may alter microbial community composition even when pH changes are small. How specific microbial groups respond to repeated applications of mineral fertilizers, however, varies considerably and seems to depend on environmental and crop management related factors.

862 citations