scispace - formally typeset
Search or ask a question

Showing papers by "J. H. J. de Bruijne published in 2007"


Journal ArticleDOI
01 Oct 2007
TL;DR: The ESA space astrometry mission Gaia will measure the positions, parallaxes and proper motions of the 1 billion brightest stars on the sky, with expected accuracies in the 725 as range down to 15 mag and sub-mas accuracies at the faint limit (20 mag) as mentioned in this paper.
Abstract: The ESA space astrometry mission Gaia will measure the positions, parallaxes and proper motions of the 1 billion brightest stars on the sky. Expected accuracies are in the 725 as range down to 15 mag and sub-mas accuracies at the faint limit (20 mag). The astrometric data are complemented by low-resolution spectrophotometric data in the 3301000 nm wavelength range and, for the brighter stars, radial velocity measurements. The scientific case covers an extremely wide range of topics in galactic and stellar astrophysics, solar system and exoplanet science, as well as the establishment of a very accurate, dense and faint optical reference frame. With a planned launch around 2012 and an (extended) operational lifetime of 6 years, final results are expected around 2021. We give a brief overview of the science goals of Gaia, the overall project organisation, expected performance, and some key technical features and challenges. © 2008 Copyright International Astronomical Union.

117 citations


Journal ArticleDOI
01 Oct 2007
TL;DR: Gaia as mentioned in this paper is a star-mapper mission due for launch late-2011, which will provide multi-epoch micro-arcsecond astrometric and milli-magnitude photometric data for the brightest one billion objects in the sky, down to at least magnitude 20.
Abstract: Gaia, ESA's ambitious star-mapper mission due for launch late-2011, will provide multi-epoch micro-arcsecond astrometric and milli-magnitude photometric data for the brightest one billion objects in the sky, down to at least magnitude 20. Spectroscopic data will simultaneously be collected for the subset of the brightest 100 million stars, down to about magnitude 17. This massive data volume will allow astronomers to reconstruct the structure, evolution and formation history of the Milky Way. It will also revolutionize studies of the solar system and stellar physics and will contribute to diverse research areas, ranging from extra-solar planets to general relativity.Underlying Gaia's scientific harvest will lie in a Catalogue, built on the fundamental space-based measurements. During the 5-year nominal operational lifetime, Gaia's payload, with its CCD mosaic containing 1 billion pixels, will autonomously detect all objects of interest and observe them throughout their passage of the focal plane. This paper discusses the workings of the Gaia instrument, details its payload, and discusses in depth how the scientific measurements will be collected. It addresses issues like maintenance of the scanning law, on-board data processing, the detection and confirmation of objects (single and multiple stars), the detection and rejection of cosmic rays and solar protons, the fundamental science measurements themselves composed of windows of CCD samples (pixels), and special strategies employed to maximize the science return for moving (i.e., solar-system) objects. The paper also explains how an on-board priority scheme will ensure catalogue completeness down to the faintest magnitudes possible, despite the limited ground-station availability and the enormous data volume that will be sent to the ground.

1 citations