scispace - formally typeset
Search or ask a question
Author

J.H. Rector

Other affiliations: University of Amsterdam
Bio: J.H. Rector is an academic researcher from VU University Amsterdam. The author has contributed to research in topics: Thin film & Optical fiber. The author has an hindex of 34, co-authored 95 publications receiving 4066 citations. Previous affiliations of J.H. Rector include University of Amsterdam.


Papers
More filters
Journal ArticleDOI
21 Mar 1996-Nature
TL;DR: In this article, thin films of yttrium and lanthanum with a layer of palladium through which hydrogen can diffuse are used to simulate metal-to-insulator transitions.
Abstract: IN many substances, changes in chemical composition, pressure or temperature can induce metal-to-insulator transitions1. Although dramatic changes in optical and electrical properties accompany such transitions, their interpretation is often complicated by attendant changes in crystallographic structure2. Yttrium, lanthanum and the trivalent rare-earth elements form hydrides that also exhibit metal–insulator transitions3–5, but the extreme reactivity and fragility of these materials hinder experimental studies5,6. To overcome these difficulties, we have coated thin films of yttrium and lanthanum with a layer of palladium through which hydrogen can diffuse. Real-time transitions from metallic (YH2 or LaH2) to semiconducting (YH3 or LaH3) behaviour occur in these films during continuous absorption of hydrogen, accompanied by pronounced changes in their optical properties. Although the timescale on which this transition occurs is at present rather slow (a few seconds), there appears to be considerable scope for improvement through the choice of rare-earth element and by adopting electrochemical means for driving the transition. In view of the spectacular changes in optical properties—yttrium hydride, for example, changes from a shiny mirror to a yellow, transparent window—metal hydrides might find important technological applications.

791 citations

Journal ArticleDOI
03 Jun 1999-Nature
TL;DR: In this paper, the authors make use of a sequential etching technique to address the question of which types of defect are responsible for the high critical currents observed in thin superconductor YBa2Cu3O7−δ.
Abstract: Thin films of the high-temperature superconductor YBa2Cu3O7−δ exhibit both a large critical current (the superconducting current density generally lies between 1011 and 1012 A m−2 at 4.2 K in zero magnetic field) and a decrease in such currents with magnetic field that point to the importance of strong vortex pinning along extended defects1,2. But it has hitherto been unclear which types of defect—dislocations, grain boundaries, surface corrugations and anti-phase boundaries—are responsible. Here we make use of a sequential etching technique to address this question. We find that both edge and screw dislocations, which can be mapped quantitatively by this technique, are the linear defects that provide the strong pinning centres responsible for the high critical currents observed in these thin films. Moreover, we find that the superconducting current density is essentially independent of the density of linear defects at low magnetic fields. These natural linear defects, in contrast to artificially generated columnar defects, exhibit self-organized short-range order, suggesting that YBa2Cu3O7−δ thin films offer an attractive system for investigating the properties of vortex matter in a superconductor with a tailored defect structure.

385 citations

Journal ArticleDOI
TL;DR: In this paper, the critical current and the pinning energy for three types of yttrium-based superconducting films from current and dynamic relaxation were determined by means of the generalized inversion scheme.
Abstract: The critical current ${\mathit{j}}_{\mathit{c}}$ and the pinning energy ${\mathit{U}}_{\mathit{c}}$ have been determined for three types of yttrium-based superconducting films from current ${\mathit{j}}_{\mathit{s}}$ and dynamic relaxation Q=d ln${\mathit{j}}_{\mathit{s}}$/d ln(dB/dt) data by means of the generalized inversion scheme. For B2 T and T80 K the temperature dependence of ${\mathit{j}}_{\mathit{c}}$ and ${\mathit{U}}_{\mathit{c}}$ for all films is found to be in excellent agreement with a model of single vortices pinned by randomly distributed weak pinning centers via spatial fluctuations of the charge carrier mean free path. Pinning due to spatial fluctuations of ${\mathit{T}}_{\mathit{c}}$ is not observed.

248 citations

Journal ArticleDOI
TL;DR: In this article, the continuous change of optical transmission with hydrogen concentration was used to measure the pressure-concentration isotherms and determine the enthalpy of hydride formation.
Abstract: Hydrogenography is an advanced combinatorial and standard method used for the search of new hydrogen-storage materials to synthesize bulk samples and to use volumetric or gravimetric techniques to follow their hydrogenation reaction. Hydrogenography, with a straightforward optical setup, makes it possible to monitor hydrogen absorption and desorption simultaneously on thousands of samples under exactly the same experimental conditions. Hydrogenography is much more than a monitoring technique, as it also provides a high-throughput method to measure quantitatively the key thermodynamic properties of hydride formation. The continuous change of optical transmission with hydrogen concentration was used to measure the pressure-concentration isotherms and determine the enthalpy of hydride formation. Hydrogenography is valuable for the search for catalytic caplayers promoting hydrogen uptake, electrode materials for batteries, and smart coatings for adaptive solar collectors.

190 citations

Journal ArticleDOI
13 Aug 1998-Nature
TL;DR: In this paper, the authors explore changes in the optical properties of yttrium films in which hydrogen diffuses laterally owing to a large concentration gradient and show that the formation of the various hydride phases is diffusion-controlled.
Abstract: Switchable mirrors1,2,3 made of thin films of the hydrides of yttrium (YHx), lanthanum (LaHx) or rare-earth metals exhibit spectacular changes in their optical properties as x is varied from 0 to 3. For example, α-YHx 2.85 is a yellowish transparent semiconductor. Here we show that this concentration dependence of the optical properties, coupled with the high mobility of hydrogen in metals, offers the possibility of real-time visual observation of hydrogen migration in solids. We explore changes in the optical properties of yttrium films in which hydrogen diffuses laterally owing to a large concentration gradient. The optical transmission profiles along the length of the film vary in such a way as to show that the formation of the various hydride phases is diffusion-controlled. We can also induce electromigration of hydrogen, which diffuses towards the anode when a current flows through the film. Consequently, hydrogen in insulating YH3−δ behaves as a negative ion, in agreement with recent strong-electron-correlation theories4,5. This ability to manipulate the hydrogen distribution (and thus the optical properties) electrically might be useful for practical applications of these switchable mirrors.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Journal ArticleDOI
TL;DR: There are an immense number of sensors reported in the literature for hydrogen detection and in this article these sensors are classified into eight different operating principles, such as measuring range, sensitivity, selectivity and response time.
Abstract: Hydrogen sensors are of increasing importance in connection with the development and expanded use of hydrogen gas as an energy carrier and as a chemical reactant. There are an immense number of sensors reported in the literature for hydrogen detection and in this work these sensors are classified into eight different operating principles. Characteristic performance parameters of these sensor types, such as measuring range, sensitivity, selectivity and response time are reviewed and the latest technology developments are reported. Testing and validation of sensor performance are described in relation to standardisation and use in potentially explosive atmospheres so as to identify the requirements on hydrogen sensors for practical applications.

1,217 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven but widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
Abstract: Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds

1,201 citations

Journal ArticleDOI
TL;DR: In this paper, a conceptual model for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal ammorphous state, is given for thin film deposition by sputtering, electronic band structure and ion diffusion.
Abstract: Electrochromic (EC) materials are able to change their optical properties, reversibly and persistently, by the application of an electrical voltage. These materials can be integrated in multilayer devices capable of modulating the optical transmittance between widely separated extrema. We first review the recent literature on inorganic EC materials and point out that today's research is focused on tungsten oxide (colouring under charge insertion) and nickel oxide (colouring under charge extraction). The properties of thin films of these materials are then discussed in detail with foci on recent results from two comprehensive investigations in the authors' laboratory. A logical exposition is obtained by covering, in sequence, structural features, thin film deposition (by sputtering), electronic band structure, and ion diffusion. A novel conceptual model is given for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal amorphous state. It is also shown that the conduction band density of states is obtainable from simple electrochemical chronopotentiometry. Ion intercalation causes the charge-compensating electrons to enter localized states, implying that the optical absorption underlying the electrochromism can be described as ensuing from transitions between occupied and empty localized conduction band states. A fully quantitative theory of such transitions is not available, but the optical absorption can be modeled more phenomenologically as due to a superposition of transitions between different charge states of the W ions (6+, 5+, and 4+). The Ni oxide films were found to have a porous structure comprised of small grains. The data are consistent with EC coloration being a surface phenomenon, most likely confined to the outer parts of the grains. Initial electrochemical cycling was found to transform hydrated Ni oxide into hydroxide and oxy-hydroxide phases on the grain surfaces. Electrochromism in thus stabilized films is consistent with reversible changes between Ni hydroxide and oxy-hydroxide, in accordance with the Bode reaction scheme. An extension of this model is put forward to account for changes of NiO to Ni2O3. It was demonstrated that electrochromism is associated solely with proton transfer. Data on chemical diffusion coefficients are interpreted for polycrystalline W oxide and Ni oxide in terms of the lattice gas model with interaction. The later part of this review is of a more technological and applications oriented character and is based on the fact that EC devices with large optical modulation can be accomplished essentially by connecting W-oxide-based and Ni-oxide-based films through a layer serving as a pure ion conductor. Specifically, we treat methods to enhance the bleached-state transmittance by mixing the Ni oxide with other oxides characterized by wide band gaps, and we also discuss pre-assembly charge insertion and extraction by facile gas treatments of the films, as well as practical device manufacturing and device testing. Here the emphasis is on novel flexible polyester-foil-based devices. The final part deals with applications with emphasis on architectural “smart” windows capable of achieving improved indoor comfort jointly with significant energy savings due to lowered demands for space cooling. Eyewear applications are touched upon as well.

1,156 citations

Journal ArticleDOI
TL;DR: This work demonstrates a simple and industrially scaleable route that yields a 1.5–5-fold improvement in the in-magnetic-field current densities of conductors that are already of high quality.
Abstract: There are numerous potential applications for superconducting tapes based on YBa(2)Cu(3)O(7-x) (YBCO) films coated onto metallic substrates. A long-established goal of more than 15 years has been to understand the magnetic-flux pinning mechanisms that allow films to maintain high current densities out to high magnetic fields. In fact, films carry one to two orders of magnitude higher current densities than any other form of the material. For this reason, the idea of further improving pinning has received little attention. Now that commercialization of YBCO-tape conductors is much closer, an important goal for both better performance and lower fabrication costs is to achieve enhanced pinning in a practical way. In this work, we demonstrate a simple and industrially scaleable route that yields a 1.5-5-fold improvement in the in-magnetic-field current densities of conductors that are already of high quality.

1,057 citations