scispace - formally typeset
Search or ask a question
Author

J.H. Schild

Bio: J.H. Schild is an academic researcher from Baylor University. The author has contributed to research in topics: Keying & Amplitude-shift keying. The author has an hindex of 1, co-authored 1 publications receiving 222 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a load-shift keying using circuit configuration modulator (LSK-CCM) was developed to perform data transmission from an implantable telemeter using reflected impedance property of an inductive couple.
Abstract: Using the reflected impedance property of an inductive couple (transformer), a modulation method, load-shift keying using circuit configuration modulator (LSK-CCM), was developed to perform data transmission from an implantable telemeter. With a very simple circuit, this method utilizes a radio-frequency electromagnetic field induced with a single pair of coils to transmit power into the implant and data out of it. >

230 citations


Cited by
More filters
Patent
30 Oct 2007
TL;DR: An analyte monitor includes a sensor, a sensor control unit, and a display unit as discussed by the authors, which is used to display an indication of a level of an analyte, based on the data obtained using the sensor.
Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.

1,856 citations

Journal ArticleDOI
08 Nov 2004
TL;DR: This paper describes the development of a high-density electronic interface to the central nervous system that permits the long-term monitoring of neural activity in vivo as well as the insertion of electronic signals into neural networks at the cellular level.
Abstract: This paper describes the development of a high-density electronic interface to the central nervous system. Silicon micromachined electrode arrays now permit the long-term monitoring of neural activity in vivo as well as the insertion of electronic signals into neural networks at the cellular level. Efforts to understand and engineer the biology of the implant/tissue interface are also underway. These electrode arrays are facilitating significant advances in our understanding of the nervous system, and merged with on-chip circuitry, signal processing, microfluidics, and wireless interfaces, they are forming the basis for a family of neural prostheses for the possible treatment of disorders such as blindness, deafness, paralysis, severe epilepsy, and Parkinson's disease.

677 citations

Patent
23 Apr 2007
TL;DR: In this article, a system and method for waking up a satellite implantable medical device ('IMD') from a sleep state in which power consumption by the satellite IMD is essentially zero.
Abstract: A system and method for waking up a satellite implantable medical device ('IMD') from a sleep state in which power consumption by the satellite IMD is essentially zero. The satellite IMD may be adapted to perform one or more designated measurement and/or therapeutic functions. The satellite IMD includes a wake-up sensor that is adapted to sense the presence or absence of a wake-up field generated by a primary IMD or an external device. The wake-up field may be an electromagnetic field, a magnetic field, or a physiologically sub-threshold excitation current (i.e., E-field). Upon sensing by the wake-up sensor of the wake-up field, other components of the satellite IMD, which may include a controller, a sensing and/or therapy module, and/or a communications module, are awakened to perform one or more designated functions.

496 citations

Journal ArticleDOI
TL;DR: In this article, a power transfer system with adaptive control technique to eliminate the power variations due to the loading or coupling coefficient changes is proposed, where a maximum of 250mW power is transmitted through an optimized coil pair driven by a Class-E power amplifier.
Abstract: Inductively coupled coil pair is the most common way of wirelessly transferring power to medical implants. However, the coil displacements and/or loading changes may induce large fluctuations in transmitted power into the implant if no adaptive control is used. In such cases, it is required to transmit excessive power to accommodate all the working conditions, which substantially reduces the power efficiency and imposes potential safety concerns. We have implemented a power transfer system with adaptive control technique to eliminate the power variations due to the loading or coupling coefficient changes. A maximum of 250mW power is transmitted through an optimized coil pair driven by Class-E power amplifier. Load shift keying is implemented to wirelessly transfer data back from the secondary to primary side over the same coil pair, with data rate of 3.3 kbps and packet error rate less than 10/sup -5/. A pseudo pulsewidth modulation has been designed to facilitate back data transmission along with forward power transmission. Through this back telemetry the system transmits the information on received power, back from implant to primary side. According to the data received, the system adjusts the supply voltage of the Class-E power amplifier through a digitally controlled dc-dc converter, thus varying the power sent to the implant. The key system parameters are optimized to ensure the stability of the closed-loop system. Measurements show that the system can transmit the 'just-needed' power for a wide range of coil separation and/or loading conditions, with power efficiency doubled when compared to the uncompensated link.

437 citations

Journal ArticleDOI
TL;DR: A microchip which serves as the telemetry protocol decoder and stimulus signal generator is fabricated by MOSIS with 1.2-mm CMOS technology and was demonstrated to provide the desired biphasic current stimulus pulses for an array of 100 retinal electrodes at video frame rates.
Abstract: In this retinal prosthesis project, a rehabilitative device is designed to replace the functionality of defective photoreceptors in patients suffering from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). The device consists of an extraocular and an intraocular unit. The implantable component receives power and a data signal via a telemetric inductive link between the two units. The extraocular unit includes a video camera and video processing board, a telemetry protocol encoder chip, and an RF amplifier and primary coil. The intraocular unit consists of a secondary coil, a rectifier and regulator, a retinal chip with a telemetry protocol decoder, a stimulus signal generator, and an electrode array. This paper focuses on the design, fabrication, and testing of a microchip which serves as the telemetry protocol decoder and stimulus signal generator. It is fabricated by MOSIS with 1.2-mm CMOS technology and was demonstrated to provide the desired biphasic current stimulus pulses for an array of 100 retinal electrodes at video frame rates.

404 citations