scispace - formally typeset
Search or ask a question
Author

J. J. Craig

Bio: J. J. Craig is an academic researcher from Stanford University. The author has contributed to research in topics: Control theory & Adaptive control. The author has an hindex of 14, co-authored 18 publications receiving 7373 citations. Previous affiliations of J. J. Craig include Adept Technology & Jet Propulsion Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: A new conceptually simple approach to controlling compliant motions of a robot manipulator that combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system is presented.
Abstract: A new conceptually simple approach to controlling compliant motions of a robot manipulator is presented. The 'hybrid' technique described combines force and torque information with positional data to satisfy simultaneous position and force trajectory constraints specified in a convenient task related coordinate system. Analysis, simulation, and experiments are used to evaluate the controller's ability to execute trajectories using feedback from a force sensing wrist and from position sensors found in the manipulator joints. The results show that the method achieves stable, accurate control of force and position trajectories for a variety of test conditions.

2,991 citations

Journal ArticleDOI
TL;DR: Several architectures for position and force control of this multiloop mechanism are described, including a way of dealing with the internal forces inherent in such systems.
Abstract: Kinematic and control issues are discussed in the context of an articulated, multifinger mechanical hand. Hand designs with particular mobility properties are illustrated, and a definition of accuracy points within manipulator workspace is given. Optimization of tlte physical dimensions of the Stanford-JPL hand is described. Several architectures for position and force control of this multiloop mechanism are described, including a way of dealing with the internal forces inherent in such systems. Preliminary results are shown for the joint torque subsystem used in the hand controller.

1,436 citations

Journal ArticleDOI
TL;DR: In this paper, an accurate dynamic model of a mechanical manipulator is used in a nonlinear, model-based scheme to control the manipulator, which yields a controllable manipulator.
Abstract: When an accurate dynamic model of a mechanical manipu lator is available, it may be used in a nonlinear, model-based scheme to control the manipulator. Such a control formula tion yields a controll...

889 citations

Book
01 Sep 1987
TL;DR: What is believed to be the first golbally convergent, rigorous proof of the stability of such a scheme in its non-linear setting, as well as its asymptotic properties and conditions for parameter convergence are presented.
Abstract: We present an adaptive version of the computed torque method for the control of manipulators with rigid links. The algorithun estimates parameters on-line which appear in the non-linear dynamic model of the manipulator, such as load and link mass parameters and friction parameters, and uses the latest estimates in the computed torque servo. We present what we believe is the first golbally convergent, rigorous proof of the stability of such a scheme in its non-linear setting, as well as its asymptotic properties and conditions for parameter convergence. We illustrate the theory with some simulation results.

862 citations

Journal ArticleDOI
TL;DR: In this article, the Stanford-JPL hand is described and several architectures for position and force control of this multiloop mechanism are described, including a way of dealing with the internal forces inherent in such systems.
Abstract: Kinematic and control issues are discussed in the context of an articulated, multifinger mechanical hand. Hand designs with particular mobility properties are illustrated, and a definition of accuracy points within manipulator workspace is given. Optimization of tlte physical dimensions of the Stanford-JPL hand is described. Several architectures for position and force control of this multiloop mechanism are described, including a way of dealing with the internal forces inherent in such systems. Preliminary results are shown for the joint torque subsystem used in the hand controller.

737 citations


Cited by
More filters
MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Book
26 Jun 2003
TL;DR: Preface, Notations 1.Introduction to Time-Delay Systems I.Robust Stability Analysis II.Input-output stability A.LMI and Quadratic Integral Inequalities Bibliography Index
Abstract: Preface, Notations 1.Introduction to Time-Delay Systems I.Frequency-Domain Approach 2.Systems with Commensurate Delays 3.Systems withIncommensurate Delays 4.Robust Stability Analysis II.Time Domain Approach 5.Systems with Single Delay 6.Robust Stability Analysis 7.Systems with Multiple and Distributed Delays III.Input-Output Approach 8.Input-output stability A.Matrix Facts B.LMI and Quadratic Integral Inequalities Bibliography Index

4,200 citations

Journal ArticleDOI
TL;DR: It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear, and a generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from theControl of impedance while preserving the superposition properties of the Norton network.
Abstract: Manipulation fundamentally requires the manipulator to be mechanically coupled to the object being manipulated; the manipulator may not be treated as an isolated system. This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. In Part I this approach is developed by considering the mechanics of interaction between physical systems. Control of position or force alone is inadequate; control of dynamic behavior is also required. It is shown that as manipulation is a fundamentally nonlinear problem, the distinction between impedance and admittance is essential, and given the environment contains inertial objects, the manipulator must be an impedance. A generalization of a Norton equivalent network is defined for a broad class of nonlinear manipulators which separates the control of motion from the control of impedance while preserving the superposition properties of the Norton network. It is shown that components of the manipulator impedance may be combined by superposition even when they are nonlinear.

3,356 citations

Journal ArticleDOI
01 Feb 1987
TL;DR: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed, and the unified approach for motion and force control is developed.
Abstract: A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed. First, issues related to the description of end-effector tasks that involve constrained motion and active force control are discussed. The fundamentals of the operational space formulation are then presented, and the unified approach for motion and force control is developed. The extension of this formulation to redundant manipulator systems is also presented, constructing the end-effector equations of motion and describing their behavior with respect to joint forces. These results are used in the development of a new and systematic approach for dealing with the problems arising at kinematic singularities. At a singular configuration, the manipulator is treated as a mechanism that is redundant with respect to the motion of the end-effector in the subspace of operational space orthogonal to the singular direction.

2,849 citations

Journal ArticleDOI
TL;DR: This survey is the first to bring to the attention of the controls community the important contributions from the tribology, lubrication and physics literatures, and provides a set of models and tools for friction compensation which will be of value to both research and application engineers.

2,658 citations