scispace - formally typeset
Search or ask a question
Author

J.J. Kingsley

Bio: J.J. Kingsley is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Particle & Combustion. The author has an hindex of 1, co-authored 1 publications receiving 569 citations.
Topics: Particle, Combustion, Calcium aluminates, Oxide

Papers
More filters
Journal ArticleDOI
TL;DR: The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements in this article, where solid combustion products have been identified by their characteristic X-ray diffraction patterns.

592 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new combustion synthesis method, the glycine-nitrate process, has been used to prepare oxide ceramic powders, including substituted chromite and manganite powders of high quality.

992 citations

Journal ArticleDOI
TL;DR: In this paper, the recent developments and trends in combustion science towards the synthesis of nanomaterials are discussed, and different modifications made to conventional combustion approaches for preparation of nano-materials are critically analyzed.
Abstract: The recent developments and trends in combustion science towards the synthesis of nanomaterials are discussed. Different modifications made to conventional combustion approaches for preparation of nanomaterials are critically analyzed. Special attention is paid to various applications of combustion synthesized nanosized products.

842 citations

Journal ArticleDOI
TL;DR: This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions.
Abstract: Solution combustion is an exciting phenomenon, which involves propagation of self-sustained exothermic reactions along an aqueous or sol–gel media. This process allows for the synthesis of a variety of nanoscale materials, including oxides, metals, alloys, and sulfides. This Review focuses on the analysis of new approaches and results in the field of solution combustion synthesis (SCS) obtained during recent years. Thermodynamics and kinetics of reactive solutions used in different chemical routes are considered, and the role of process parameters is discussed, emphasizing the chemical mechanisms that are responsible for rapid self-sustained combustion reactions. The basic principles for controlling the composition, structure, and nanostructure of SCS products, and routes to regulate the size and morphology of the nanoscale materials are also reviewed. Recently developed systems that lead to the formation of novel materials and unique structures (e.g., thin films and two-dimensional crystals) with unusual...

841 citations

Journal ArticleDOI
TL;DR: A review of sol-gel preparation of high temperature superconducting oxides is presented in this paper, where different classes of gel technologies were utilized, such as hydrolysis-condensation of metal-alkoxides, gelation, and organic polymeric gel.
Abstract: This review article focuses on the sol-gel preparation of high temperature superconducting oxides wherein different classes of gel technologies were utilized. These involve: 1) the sol-gel route based upon hydrolysis-condensation of metal-alkoxides, 2) the gelation route based upon concentration of aqueous solutions involving metal-chelates, often called as “chelate gel” or “amorphous chelate” route, and 3) the organic polymeric gel route. This paper reviews the current status of these sol-gel processes, and illustrates the underlying chemistry involved in each sol-gel technology. It is demonstrated that the chemical homogeneity of the gel is often disturbed by the differences in the chemistries of the cations. Prior to gelation the starting precursor solution containing various forms of metal-complexes must be chemically modified to overcome this problem. Illustration of a variety of strategies for success in obtaining a homogeneous multicomponent gel with no precipitation is focal point of this review article.

763 citations

Journal ArticleDOI
TL;DR: The article discusses oxidation catalysis by substitutional cation doping of binary oxides by assuming that the 'as-prepared' catalyst is a doped oxide that, under reducing reaction conditions, is converted to very small metallic dopant clusters supported on the host oxide.
Abstract: The article discusses oxidation catalysis by substitutional cation doping of binary oxides. Substitutional cation doping is not the only possibility. One can imagine that replacing some anions with other anions may also be beneficial. There is evidence that the presence of small amounts of halogen in the feed or on the oxide surface improves its catalytic activity. It is very likely that doped oxide catalysts have been used before the concept was formulated explicitly. Most oxide catalysts have low levels of impurities that may be substitutional dopants. If they segregate at the surface, they can affect the catalytic activity without our knowledge even though their net concentration is very low. It is also possible that the 'as-prepared' catalyst is a doped oxide that, under reducing reaction conditions, is converted to very small metallic dopant clusters supported on the host oxide. The physical and chemical properties of such clusters are different from those of a bulk metal, and it is difficult to distinguish them from a doped oxide.

668 citations