scispace - formally typeset
Search or ask a question
Author

J. J. Kornuc

Bio: J. J. Kornuc is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Protein subunit & Isotopologue. The author has an hindex of 1, co-authored 2 publications receiving 589 citations.

Papers
More filters
Journal ArticleDOI
18 Sep 1992-Science
TL;DR: The crystal structure of the nitrogenase Fe-protein from Azotobacter vinelandii has been determined and it appears that interactions between the nucleotide and cluster sites must be indirectly coupled by allosteric changes occurring at the subunit interface.
Abstract: The nitrogenase enzyme system catalyzes the ATP (adenosine triphosphate)-dependent reduction of dinitrogen to ammonia during the process of nitrogen fixation. Nitrogenase consists of two proteins: the iron (Fe)-protein, which couples hydrolysis of ATP to electron transfer, and the molybdenum-iron (MoFe)-protein, which contains the dinitrogen binding site. In order to address the role of ATP in nitrogen fixation, the crystal structure of the nitrogenase Fe-protein from Azotobacter vinelandii has been determined at 2.9 angstrom (A) resolution. Fe-protein is a dimer of two identical subunits that coordinate a single 4Fe:4S cluster. Each subunit folds as a single alpha/beta type domain, which together symmetrically ligate the surface exposed 4Fe:4S cluster through two cysteines from each subunit. A single bound ADP (adenosine diphosphate) molecule is located in the interface region between the two subunits. Because the phosphate groups of this nucleotide are approximately 20 A from the 4Fe:4S cluster, it is unlikely that ATP hydrolysis and electron transfer are directly coupled. Instead, it appears that interactions between the nucleotide and cluster sites must be indirectly coupled by allosteric changes occurring at the subunit interface. The coupling between protein conformation and nucleotide hydrolysis in Fe-protein exhibits general similarities to the H-Ras p21 and recA proteins that have been recently characterized structurally. The Fe-protein structure may be relevant to the functioning of other biochemical energy-transducing systems containing two nucleotide-binding sites, including membrane transport proteins.

617 citations

Journal ArticleDOI
TL;DR: In this article , a nontargeted 21 tesla (T) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to detect per-and polyfluoroalkyl substances (PFASs) in an aqueous film-forming foam (AFFF) using suspect screening, a targeted formula database (C, H, Cl, F, N, O, P, S; ≤865 Da), isotopologues, and Kendrick-analogous mass difference networks (KAMDNs).
Abstract: Per- and polyfluoroalkyl substances (PFASs) are a large family of thousands of chemicals, many of which have been identified using nontargeted time-of-flight and Orbitrap mass spectrometry methods. Comprehensive characterization of complex PFAS mixtures is critical to assess their environmental transport, transformation, exposure, and uptake. Because 21 tesla (T) Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the highest available mass resolving power and sub-ppm mass errors across a wide molecular weight range, we developed a nontargeted 21 T FT-ICR MS method to screen for PFASs in an aqueous film-forming foam (AFFF) using suspect screening, a targeted formula database (C, H, Cl, F, N, O, P, S; ≤865 Da), isotopologues, and Kendrick-analogous mass difference networks (KAMDNs). False-positive PFAS identifications in a natural organic matter (NOM) sample, which served as the negative control, suggested that a minimum length of 3 should be imposed when annotating CF2-homologous series with positive mass defects. We putatively identified 163 known PFASs during suspect screening, as well as 134 novel PFASs during nontargeted screening, including a suspected polyethoxylated perfluoroalkane sulfonamide series. This study shows that 21 T FT-ICR MS analysis can provide unique insights into complex PFAS composition and expand our understanding of PFAS chemistries in impacted matrices.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations

Journal ArticleDOI
04 Dec 1998-Science
TL;DR: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined, providing insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.
Abstract: A three-dimensional structure for the monomeric iron-containing hydrogenase (CpI) from Clostridium pasteurianum was determined to 1.8 angstrom resolution by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing. CpI, an enzyme that catalyzes the two-electron reduction of two protons to yield dihydrogen, was found to contain 20 gram atoms of iron per mole of protein, arranged into five distinct [Fe-S] clusters. The probable active-site cluster, previously termed the H-cluster, was found to be an unexpected arrangement of six iron atoms existing as a [4Fe-4S] cubane subcluster covalently bridged by a cysteinate thiol to a [2Fe] subcluster. The iron atoms of the [2Fe] subcluster both exist with an octahedral coordination geometry and are bridged to each other by three non-protein atoms, assigned as two sulfide atoms and one carbonyl or cyanide molecule. This structure provides insights into the mechanism of biological hydrogen activation and has broader implications for [Fe-S] cluster structure and function in biological systems.

1,719 citations

Journal ArticleDOI
TL;DR: Highlights in biological nitrogen fixation during the last fifty years are highlighted.
Abstract: Biological nitrogen fixation (BNF) is the process of the reduction of dinitrogen from the air to ammonia carried out by a large number of species of free-living and symbiotic microbes called diazotrophs. BNF presents an inexpensive and environmentally sound, sustainable approach to crop production and constitutes one of the most important Plant Growth Promotion (PGP) scenarios. Here I will summarize various aspects of BNF, including the dinitrogen reduction catalysed reaction carried out by “nitrogenase” and the enzymes/genes involved and their regulation, the inherent “oxygen paradox” , the identification of diazotrophs, sustainable agricultural uses of BNF, symbiotic plant-diazotroph interactions and endophytic diazotrophs, data from the field, and future prospects in BNF.

1,512 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase replacement of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the H2O/O2 mixture and shows clear patterns in the response of these two types of molecules to each other in a stationary phase.
Abstract: Brian M. Hoffman,* Dmitriy Lukoyanov, Zhi-Yong Yang,† Dennis R. Dean,*,‡ and Lance C. Seefeldt*,† †Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322, United States ‡Department of Biochemistry, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States Departments of Chemistry and Molecular Biosciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

1,247 citations