scispace - formally typeset
Search or ask a question
Author

J.J. Sanchez-Gasca

Bio: J.J. Sanchez-Gasca is an academic researcher from GE Energy Infrastructure. The author has contributed to research in topics: Electric power system & Wind power. The author has an hindex of 22, co-authored 46 publications receiving 3258 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the major conclusions drawn from the presentations and ensuing discussions during the all day session, focusing on the root causes of grid blackouts, together with recommendations based on lessons learned.
Abstract: On August 14, 2003, a cascading outage of transmission and generation facilities in the North American Eastern Interconnection resulted in a blackout of most of New York state as well as parts of Pennsylvania, Ohio, Michigan, and Ontario, Canada. On September 23, 2003, nearly four million customers lost power in eastern Denmark and southern Sweden following a cascading outage that struck Scandinavia. Days later, a cascading outage between Italy and the rest of central Europe left most of Italy in darkness on September 28. These major blackouts are among the worst power system failures in the last few decades. The Power System Stability and Power System Stability Controls Subcommittees of the IEEE PES Power System Dynamic Performance Committee sponsored an all day panel session with experts from around the world. The experts described their recent work on the investigation of grid blackouts. The session offered a unique forum for discussion of possible root causes and necessary steps to reduce the risk of blackouts. This white paper presents the major conclusions drawn from the presentations and ensuing discussions during the all day session, focusing on the root causes of grid blackouts. This paper presents general conclusions drawn by this Committee together with recommendations based on lessons learned.

1,220 citations

Journal ArticleDOI
TL;DR: Concepts are described which provide design engineers with the insight to control performance and the understanding needed to ensure the secure operation of the bulk transmission system.
Abstract: The design of controllers sited in the transmission network for damping interarea power oscillations requires several types of analytical tools and field verification methods. Probably the most important aspect of such control design is the selection of proper feedback measurements from the network. This paper describes concepts which provide design engineers with the insight to control performance and the understanding needed to ensure the secure operation of the bulk transmission system. Specific attention is directed to procedures for selecting feedback signals. >

385 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the use of multiple input signals for the design of power system stabilizers and thyristor-controlled series-compensation controllers and showed the benefits of combining input signals to move the system zeros to more desirable locations, allowing the controller to be more effective in providing additional damping to the interarea modes.
Abstract: We have investigated the use of multiple input signals for the design of power system stabilizers and thyristor-controlled series-compensation controllers. These examples show the benefits of combining input signals to move the system zeros to more desirable locations, allowing the controller to be more effective in providing additional damping to the interarea modes. The multiple-input-signal controller can be used as the primary control system or as a backup system when some of the controllers are temporarily unavailable. In some cases, a multiple-input-signal controller structure may be more cost effective than installing a new control device. The choices of the input signals used for the controller designs in the example systems in the article have been based on good knowledge of the systems.

226 citations

Journal ArticleDOI
TL;DR: In this paper, the Steiglitz-McBride algorithm, the eigensystem realization algorithm, and the Prony method were used to identify low order linear systems of power systems modeled in standard transient stability programs.
Abstract: This paper describes the results of a study to evaluate the performance of three identification methods for the study of low frequency electromechanical oscillations. The three identification methods considered are: the Steiglitz-McBride algorithm; the eigensystem realization algorithm; and the Prony method. The identification methods are used to identify low order linear systems of power systems modeled in standard transient stability programs. This is accomplished by processing the system response to a simple probing pulse. The frequency domain characteristics of several identified systems are compared using three power systems with lightly damped electromechanical modes.

206 citations

Journal ArticleDOI
TL;DR: In this article, a pitch-angle controller is designed using a root-locus analysis to investigate how Type-3 DFAG wind turbines can impact this response on a test power system, whose frequency response is determined mainly by a frequency-regulation mode.
Abstract: As wind penetration increases in power systems around the world, new challenges to the controllability and operation of a power system are encountered. In particular, frequency response is impacted when a considerable amount of power-electronics interfaced generation, such as wind, is connected to the system. This paper uses small-signal analysis and dynamic simulation to study frequency response in power systems and investigate how Type-3 DFAG wind turbines can impact this response on a test power system, whose frequency response is determined mainly by a frequency-regulation mode. By operating the wind turbines in a deloaded mode, a proposed pitch-angle controller is designed using a root-locus analysis. Time simulations are used to demonstrate the transient and steady-state performance of the proposed controller in the test system with 25% and 50% wind penetration.

158 citations


Cited by
More filters
Book
03 Mar 2009
TL;DR: In this article, the authors provide a comprehensive coverage of robust power system frequency control understanding, simulation and design, and develop an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mathematical analytical methods.
Abstract: Frequency control as a major function of automatic generation control is one of the important control problems in electric power system design and operation, and is becoming more significant today due to the increasing size, changing structure, emerging new uncertainties, environmental constraints, and the complexity of power systems. Robust Power System Frequency Control uses the recent development of linear robust control theory to provide practical, systematic, fast, and flexible algorithms for the tuning of power system load-frequency controllers. The physical constraints and important challenges related to the frequency regulation issue in a deregulated environment are emphasized, and most results are supplemented by real-time simulations. The developed control strategies attempt to bridge the existing gap between the advantages of robust/optimal control and traditional power system frequency control design. The material summarizes the long term research outcomes and contributions of the author’s experience with power system frequency regulation. It provides a thorough understanding of the basic principles of power system frequency behavior over a wide range of operating conditions. It uses simple frequency response models, control structures and mathematical algorithms to adapt modern robust control theorems with frequency control issues as well as conceptual explanations. The engineering aspects of frequency regulation have been considered, and practical methods for computer analysis and design are also discussed. Robust Power System Frequency Control provides a comprehensive coverage of frequency control understanding, simulation and design. The material develops an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mathematical analytical methods.

1,018 citations

Book
27 Feb 2002
TL;DR: In this paper, the authors present a comparison of different SVC controllers for power transmission networks with respect to their performance in terms of the number of SVC inputs and outputs, as well as the frequency of the SVC outputs.
Abstract: 1. Introduction. 1.1 Background. 1.2 Electrical Transmission Networks. 1.3 Conventional Control Mechanisms. 1.4 Flexible ac Transmission Systems (FACTS). 1.5 Emerging Transmission Networks. 2. Reactor--Power Control in Electrical Power Transmission Systems. 2.1 Reacrive Power. 2.2 Uncompensated Transmission Lines. 2.3 Passive Compensation. 2.4 Summary. 3. Principles of Conventional Reactive--Power Compensators. 3.1 Introduction. 3.2 Synchronous Condensers. 3.3 The Saturated Reactor (SR). 3.4 The Thyristor--Controlled Reactor (TCR). 3.5 The Thyristor--Controlled Transformer (TCT). 3.6 The Fixed Capacitor--Thyristor--Controlled Reactor (FC--TCR). 3.7 The Mechanically Switched Capacitor--Thristor--Controlled Reactor (MSC--TCR). 3.8 The Thyristor--Switched capacitor and Reactor. 3.9 The Thyristor--Switched capacitor--Thyristor--Controlled Reactor (TSC--TCR). 3.10 A Comparison of Different SVCs. 3.11 Summary. 4. SVC Control Components and Models. 4.1 Introduction 4.2 Measurement Systems. 4.3 The Voltage Regulator. 4.4 Gate--Pulse Generation. 4.5 The Synchronizing System. 4.6 Additional Control and Protection Functions. 4.7 Modeling of SVC for Power--System Studies. 4.8 Summary. 5. Conceepts of SVC Voltage Control. 5.1 Introduction 5.2 Voltage Control. 5.3 Effect of Network Resonances on the Controller Response. 5.4 The 2nd Harmonic Interaction Between the SVC and ac Network. 5.5 Application of the SVC to Series--Compensated ac Systems. 5.6 3rd Harmonic Distortion. 5.7 Voltage--Controlled Design Studies. 5.8 Summary. 6. Applications. 6.1 Introduction. 6.2 Increase in Steady--State Power--Transfer Capacity. 6.3 Enhancement of Transient Stability. 6.4 Augmentation of Power--System Damping. 6.5 SVC Mitigation of Subsychronous Resonance (SSR). 6.6 Prevention of Voltage Instability. 6.7 Improvement of HVDC Link Performance. 6.8 Summary. 7. The Thyristor--Controlled SeriesCapacitor (TCSC). 7.1 Series Compensation. 7.2 The TCSC Controller. 7.3 Operation of the TCSC. 7.4 The TSSC. 7.5 Analysis of the TCSC. 7.6 Capability Characteristics. 7.7 Harmonic Performance. 7.8 Losses. 7.9 Response of the TCSC. 7.10 Modeling of the TCSC. 7.11 Summary. 8. TCSC Applications. 8.1 Introduction. 8.2 Open--Loop Control. 8.3 Closed--Loop Control. 8.4 Improvement of the System--Stability Limit. 8.5 Enhancement of System Damping. 8.6 Subsynchronous Resonanace (SSR) Mitigation. 8.7 Voltage--Collapse Prevention. 8.8 TCSC Installations. 8.9 Summary. 9. Coordination of FACTS Controllers. 9.1 Introduction 9.2 Controller Interactions. 9.3 SVC--SVC Interaction. 9.4 SVC--HVDC Interaction. 9.5 SVC--TCSC Interaction. 9.6 TCSC--TCSC Interaction. 9.7 Performance Criteria for Damping--Controller Design. 9.8 Coordination of Multiple Controllers Using Linear--Control Techniques. 9.9 Coordination of Multiple Controllers using Nonlinear--Control Techniques. 9.10 Summary. 10. Emerging FACTS Controllers. 10.1 Introduction. 10.2 The STATCOM. 10.3 THE SSSC. 10.4 The UPFC. 10.5 Comparative Evaluation of Different FACTS Controllers. 10.6 Future Direction of FACTS Technology. 10.7 Summary. Appendix A. Design of an SVC Voltage Regulator. A.1 Study System. A.2 Method of System Gain. A.3 Elgen Value Analysis. A.4 Simulator Studies. A.5 A Comparison of Physical Simulator results With Analytical and Digital Simulator Results Using Linearized Models. Appendix B. Transient--Stability Enhancement in a Midpoint SVC--Compensated SMIB System. Appendix C. Approximate Multimodal decomposition Method for the Design of FACTS Controllers. C.1 Introduction. C.2 Modal Analysis of the ith Swing Mode, C.3 Implications of Different Transfer Functions. C.4 Design of the Damping Controller. Appendix D. FACTS Terms and Definitions. Index.

954 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed account of analytical work carried out to determine the parameters of power system stabilizers (PSS) for the Darlington nuclear generating station presently under construction in eastern Ontario is presented.
Abstract: This paper provides a detailed account of analytical work carried out to determine the parameters of power system stabilizers (PSS) for the Darlington nuclear generating station presently under construction in eastern Ontario. The results presented are, however, of general interest and provide a comprehensive analysis of the effects of the different stabilizer parameters on the overall dynamic performance of the power system. They show how stabilizer settings may be selected so as to enhance the steady-state and transient stability of local plant modes as well as inter-area modes in large interconnected systems. In addition, it is shown that the selected parameters result in satisfactory performance during system islanding conditions, when large frequency excursions are experienced. Darlington GS, when completed by 1992, will comprise four 1100 MVA, 0.85 p.f., 1800 RPM turbine generators with "CANDU-PHW" reactors, moderated and cooled by heavy water. The station will be incorporated into the 500 kV network through three double-circuit lines. The units will be equipped with transformer-fed thyristor excitation systems and Delta-P-Omega type PSS [1, 2].

854 citations

BookDOI
01 Oct 2012
TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options.
Abstract: The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy chalenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is a invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

812 citations

Journal ArticleDOI
TL;DR: This paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
Abstract: Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. This paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

800 citations