scispace - formally typeset
Search or ask a question
Author

J. Jon A. Cooney

Bio: J. Jon A. Cooney is an academic researcher from Environmental Molecular Sciences Laboratory. The author has contributed to research in topics: Molybdenum & HOMO/LUMO. The author has an hindex of 2, co-authored 3 publications receiving 427 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The threshold PES feature in all six species is shown to have the same origin and is due to detaching the single unpaired electron in the HOMO, mainly of Mo 4d character.
Abstract: Using photodetachment photoelectron spectroscopy (PES) in the gas phase, we investigated the electronic structure and chemical bonding of six anionic [Mo(V)O](3+) complexes, [MoOX(4)](-) (where X = Cl (1), SPh (2), and SPh-p-Cl (3)), [MoO(edt)(2)](-) (4), [MoO(bdt)(2)](-) (5), and [MoO(bdtCl(2))(2)](-) (6) (where edt = ethane-1,2-dithiolate, bdt = benzene-1,2-dithiolate, and bdtCl(2) = 3,6-dichlorobenzene-1,2-dithiolate). The gas-phase PES data revealed a wealth of new electronic structure information about the [Mo(V)O](3+) complexes. The energy separations between the highest occupied molecular orbital (HOMO) and HOMO-1 were observed to be dependent on the O-Mo-S-C(alpha) dihedral angles and ligand types, being relatively large for the monodentate ligands, 1.32 eV for Cl and 0.78 eV for SPh and SPhCl, compared to those of the bidentate dithiolate complexes, 0.47 eV for edt and 0.44 eV for bdt and bdtCl(2). The threshold PES feature in all six species is shown to have the same origin and is due to detaching the single unpaired electron in the HOMO, mainly of Mo 4d character. This result is consistent with previous theoretical calculations and is verified by comparison with the PES spectra of two d(0) complexes, [VO(bdt)(2)](-) and [VO(bdtCl(2))(2)](-). The observed PES features are interpreted on the basis of theoretical calculations and previous spectroscopic studies in the condensed phase.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Proton-coupled electron transfer is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues and several are reviewed.
Abstract: ▪ Abstract Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several are...

2,182 citations

Journal ArticleDOI
Russ Hille1
TL;DR: The present minireview summarizes recent mechanistic and structure/function studies of members of the molybdenum-containing hydroxylases, a large and growing family of enzymes.

299 citations

Journal ArticleDOI
TL;DR: Cold anions result in better resolved photoelectron spectra due to the elimination of vibrational hot bands and yield more accurate energetic and spectroscopic information.
Abstract: The ability to control ion temperatures is critical for gas phase spectroscopy and has been a challenge in chemical physics. A low-temperature photoelectron spectroscopy instrument has been developed for the investigation of complex anions in the gas phase, including multiply charged anions, solvated species, and biological molecules. The new apparatus consists of an electrospray ionization source, a three dimensional (3D) Paul trap for ion accumulation and cooling, a time-of-flight mass spectrometer, and a magnetic-bottle photoelectron analyzer. A key feature of the new instrument is the capability to cool and tune ion temperatures from 10to350K in the 3D Paul trap, which is attached to the cold head of a closed cycle helium refrigerator. Ion cooling is accomplished in the Paul trap via collisions with a background gas and has been demonstrated by observation of complete elimination of vibrational hot bands in photoelectron spectra of various anions ranging from small molecules to complex species. Further evidence of ion cooling is shown by the observation of H2-physisorbed anions at low temperatures. Cold anions result in better resolved photoelectron spectra due to the elimination of vibrational hot bands and yield more accurate energetic and spectroscopic information. Temperature-dependent studies are made possible for weakly bonded molecular and solvated clusters, allowing thermodynamic information to be obtained.

264 citations

Journal ArticleDOI
TL;DR: This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models, and valence bond-based models.
Abstract: Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. F...

256 citations