scispace - formally typeset
Search or ask a question
Author

J. K. Ahn

Bio: J. K. Ahn is an academic researcher from Pusan National University. The author has contributed to research in topics: Physics & Nuclear physics. The author has an hindex of 24, co-authored 48 publications receiving 4089 citations.
Topics: Physics, Nuclear physics, Meson, Photon, Scattering


Papers
More filters
Journal ArticleDOI
TL;DR: The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations.
Abstract: The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations. Antineutrinos from six $2.8\text{ }\text{ }{\mathrm{GW}}_{\mathrm{th}}$ reactors at the Yonggwang Nuclear Power Plant in Korea, are detected by two identical detectors located at 294 and 1383 m, respectively, from the reactor array center. In the 229 d data-taking period between 11 August 2011 and 26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a background fraction of 5.5% (2.7%). The ratio of observed to expected numbers of antineutrinos in the far detector is $0.920\ifmmode\pm\else\textpm\fi{}0.009(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.014(\mathrm{syst})$. From this deficit, we determine ${sin }^{2}2{\ensuremath{\theta}}_{13}=0.113\ifmmode\pm\else\textpm\fi{}0.013(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.019(\mathrm{syst})$ based on a rate-only analysis.

1,979 citations

Journal ArticleDOI
TL;DR: The gamman-->K(+)K(-)n reaction on 12C has been studied by measuring both K+ and K- at forward angles and a sharp baryon resonance peak was observed, consistent with an antidecuplet of baryons predicted by the chiral soliton model.
Abstract: The $\ensuremath{\gamma}n\ensuremath{\rightarrow}{K}^{+}{K}^{\ensuremath{-}}n$ reaction on $^{12}\mathrm{C}$ has been studied by measuring both ${K}^{+}$ and ${K}^{\ensuremath{-}}$ at forward angles. A sharp baryon resonance peak was observed at $1.54\ifmmode\pm\else\textpm\fi{}0.01\text{ }\text{ }\mathrm{G}\mathrm{e}\mathrm{V}/{c}^{2}$ with a width smaller than $25\text{ }\text{ }\mathrm{M}\mathrm{e}\mathrm{V}/{c}^{2}$ and a Gaussian significance of $4.6\ensuremath{\sigma}$. The strangeness quantum number ($S$) of the baryon resonance is $+1$. It can be interpreted as a molecular meson-baryon resonance or alternatively as an exotic five-quark state ($uudd\overline{s}$) that decays into a ${K}^{+}$ and a neutron. The resonance is consistent with the lowest member of an antidecuplet of baryons predicted by the chiral soliton model.

691 citations

Journal ArticleDOI
TL;DR: Differential cross sections and photon-beam asymmetries for the {gamma}-vectorp{yields}K{sup +}{lambda} and δ-gamma-vector p{y yieldss} K{sup+sigma}{sup 0} reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and in the angular range from {theta}{sub c.m}=0 deg. to 60 deg.
Abstract: Differential cross sections and photon-beam asymmetries for the {gamma}-vectorp{yields}K{sup +}{lambda} and {gamma}-vectorp{yields}K{sup +}{sigma}{sup 0} reactions have been measured in the photon energy range from 1.5 to 2.4 GeV and in the angular range from {theta}{sub c.m.}=0 deg. to 60 deg. of the K{sup +} scattering angle in the center-of-mass system at the SPring-8/LEPS facility. The photon-beam asymmetries for both the reactions have been found to be positive and to increase with the photon energy. The measured differential cross sections agree with the data measured by the CLAS Collaboration at cos{theta}{sub c.m.} 0.9. In the K{sup +}{lambda} reaction, the resonance-like structure found in the CLAS and SAPHIR data at W=1.96 GeV is confirmed. The differential cross sections at forward angles suggest a strong K-exchange contribution in the t-channel for the K{sup +}{lambda} reaction, but not for the K{sup +}{sigma}{sup 0} reaction.

130 citations

Journal ArticleDOI
TL;DR: The first dedicated search for the rare neutral-kaon decay was carried out in the E391a experiment at the KEK 12-GeV proton synchrotron as mentioned in this paper.
Abstract: The first dedicated search for the rare neutral-kaon decay K{sub L}{sup 0{yields}{pi}0{nu}{nu}} has been carried out in the E391a experiment at the KEK 12-GeV proton synchrotron. The final upper limit of 2.6x10{sup -8} at the 90% confidence level was set on the branching ratio for the decay.

128 citations

Journal ArticleDOI
TL;DR: The photo-production of mesons from Li, C, Al, and Cu at forward angles has been measured at E γ = 1.5 − 2.4 GeV, and the number of events for incoherent mesons was found to have a target mass number dependence of A 0.72 ± 0.07 in the kinematical region of | t | ⩽ 0.6 GeV 2 / c 2 as mentioned in this paper.

120 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations.
Abstract: The RENO experiment has observed the disappearance of reactor electron antineutrinos, consistent with neutrino oscillations, with a significance of 4.9 standard deviations. Antineutrinos from six $2.8\text{ }\text{ }{\mathrm{GW}}_{\mathrm{th}}$ reactors at the Yonggwang Nuclear Power Plant in Korea, are detected by two identical detectors located at 294 and 1383 m, respectively, from the reactor array center. In the 229 d data-taking period between 11 August 2011 and 26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a background fraction of 5.5% (2.7%). The ratio of observed to expected numbers of antineutrinos in the far detector is $0.920\ifmmode\pm\else\textpm\fi{}0.009(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.014(\mathrm{syst})$. From this deficit, we determine ${sin }^{2}2{\ensuremath{\theta}}_{13}=0.113\ifmmode\pm\else\textpm\fi{}0.013(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.019(\mathrm{syst})$ based on a rate-only analysis.

1,979 citations

Journal ArticleDOI
TL;DR: In this article, the nuclear forces can be derived using effective chiral Lagrangians consistent with the symmetries of QCD, and the status of the calculations for two and three nucleon forces and their applications in few-nucleon systems are reviewed.
Abstract: Nuclear forces can be systematically derived using effective chiral Lagrangians consistent with the symmetries of QCD. I review the status of the calculations for two- and three-nucleon forces and their applications in few-nucleon systems. I also address issues like the quark mass dependence of the nuclear forces and resonance saturation for four-nucleon operators.

1,455 citations

Journal ArticleDOI
TL;DR: Recently, the LHCb Collaboration discovered two hidden-charm pentaquark states, which are also beyond the quark model as discussed by the authors, and investigated various theoretical interpretations of these candidates of the multiquark states.

1,083 citations

Journal ArticleDOI
TL;DR: In this article, deconfined quark matter within NJL-type models are reviewed, focusing on the regime of low temperatures and moderate densities, which is not accessible by perturbative QCD.

1,008 citations

Journal ArticleDOI
TL;DR: This paper focuses on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle and gives a mini-review of finite group theory.
Abstract: This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A₄, S₄ and Δ(96).

849 citations