scispace - formally typeset
Search or ask a question
Author

J. K. Brimacombe

Bio: J. K. Brimacombe is an academic researcher from University of British Columbia. The author has contributed to research in topics: Continuous casting & Casting (metalworking). The author has an hindex of 29, co-authored 62 publications receiving 2456 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review examines the different types of internal and surface cracks that can form during the continuous casting of steel and assesses the operating and metallurgical factors that are known to influence crack formation.
Abstract: This review examines the different types of internal and surface cracks that can form during the continuous casting of steel. For each crack type, the operating and metallurgical factors that are known to influence crack formation are assessed in the light of the high temperature mechanical properties of steel and a knowledge of the stresses generated in the solidifying shell. The importance of two zones of low ductility in steel is demonstrated by this approach. One zone exists above 1340°C and probably accounts for the formation of all internal cracks and surface longitudinal cracks. The other zone lies between 700 and 900°C and is related to the presence of soluble aluminum, niobium and vanadium. Transverse surface cracks in slabs can be related to the latter zone.

280 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of oscillation marks on the surface of continuously cast slabs has been studied by metallographically examining slab samples and by performing a set of mathematical analyses of heat flow, lubrication, and meniscus shape.
Abstract: The formation of oscillation marks on the surface of continuously cast slabs has been studied by metallographically examining slab samples and by performing a set of mathematical analyses of heat flow, lubrication, and meniscus shape in the meniscus region of the mold. The metallographic study has revealed that, in agreement with previous work, the oscillation marks can be classified principally according to the presence or absence of a small “hook” in the subsurface structure at the base of individual oscillation marks. The depth of the oscillation marks exhibiting subsurface hooks varies with the carbon content, reaching a maximum at about 0.1 pct carbon, while the oscillation marks without hooks show no carbon dependence. The analysis of heat flow at the meniscus, which is based on a measured mold heat-flux distribution, indicates that depending on the level of superheat, the meniscus may partially freeze within the period of a typical mold oscillation cycle. Lubrication theory has shown that, owing to the geometry of the mold flux channel between the solidifying shell at the meniscus and the straight mold wall, significant pressure gradients capable of deforming the meniscus can be generated in the flux by the reciprocating motion of the mold relative to the shell. A force balance on the interface between the steel and the mold flux has been applied to compute the shape of the meniscus as a function of the pressure developed in the lubricating flux at different stages in the mold oscillation cycle. This has demonstrated that the “contact” point between the meniscus and mold moves out of phase with (by π/2), and has a greater amplitude than, the mold displacement so that just at, or near, the end of the negative strip time molten steel can overflow at the meniscus. From these studies a reasonable mechanism of oscillation-mark formation emerges which involves interaction between the oscillating mold and the meniscusvia pressure gradients in the mold flux, meniscus solidification, and overflow. The mechanism is consistent with industrial observations.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a model to predict the conditions giving rise to the different forms of transverse bed motion in a rotary cylinder: slumping, rolling, slipping, cascading, cataracting, and centrifuging.
Abstract: Mathematical models have been developed to predict the conditions giving rise to the different forms of transverse bed motion in a rotary cylinder: slumping, rolling, slipping, cascading, cataracting, and centrifuging. Model predictions of the boundaries between these modes of bed motion compare well with previously reported measurements, and can be represented conveniently on a Bed Behavior Diagram which is a plot of pct fill against Froude number (or bed depthvs rotational speed). The location of the boundaries is shown to depend on material variables which characterize frictional conditions in the bed. For the slumping/rolling boundary these are primarily the shear angle and the limiting wedge angle which defines the solids involved in a slump. For the slipping/slumping and slipping/rolling boundaries the governing material variables are the bed/wall friction angle and the upper angle of repose and dynamic angle of repose, respectively. Similarly, the location of the other boundaries related to cascading and cataracting is determined by the dynamic angle of repose. Complete Bed Behavior Diagrams have been calculated for solids having different particle size and particle shape rotated in cylinders having different diameters.

142 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of gas discharging into a liquid has been investigated in the labora-tory and in plant, where high speed cinematography and pressure measurements in the tuyere have been carried out to characterize the flow regimes.
Abstract: The behavior of gas discharging into a liquid has been investigated in the labora-tory and in plant. The laboratory work has involved the injection of different gases from a submerged, horizontal tuyere into water, zinc-chloride solution, and a mercury bath. High speed cinematography and pressure measurements in the tuyere have been carried out to characterize the flow regimes. In the case of the mercury bath, a novel “half-tuyere” has been developed to permit visual observation of the gas. In this way, two regimes of flow, bubbling and steady jetting, have been delineated as a function of the modified Froude number and the ratio of gas to liquid densities. Pressure measurements at the tuyere tip have been correlated to the different stages of bubble growth in the bubbling regime, and can be used to distinguish one flow regime from the other. The measured bubble frequency and volume correspond reasonably well to predictions of a simple model of bubble growth under conditions of constant flow. The forward penetration of the jet centerline from the tuyere tip has been measured and found to depend both onN Fr′ andρg/ρl. In the industrial tests, pressure taps have been installed in the tuyeres of a nickel converter to monitor the pressure wave of the jets under normal, low pressure blowing operations. The measurements show that the converter jets operate in the bubbling mode with a bubble frequency of 10 to 12 s−1, similar to a gas jet in mercury. Tests involving higher pressure injection indicate that the steady jetting, or underexpanded, regime obtains at pressures of about 340 kPa (50 psi). Based on equivalent experiments in the laboratory, it is clear that low pressure blowing has the disadvantage of poor penetration of air into the bath so that the jets rise close to the back wall and locally accelerate refractory wear. Moreover between the formation of successive bubbles, the bath washes against the tuyere mouth and contributes to accretion formation. This necessitates periodic punching of the tuyeres which also contributes to refractory wear at the tuyere line. The use of high pressure injection to achieve steady jetting conditions, as currently practiced in the new bottom blown steelmaking processes, should be considered to solve these prob-lems, and possibly usher in a new generation of nonferrous converters.

137 citations

Journal ArticleDOI
TL;DR: The structural development of air-water bubble plumes during upward injection into a ladle-shaped vessel has been measured under different conditions of air flow rate, orifice diameter, and bath depth.
Abstract: The structural development of air-water bubble plumes during upward injection into a ladle-shaped vessel has been measured under different conditions of air flow rate, orifice diameter, and bath depth. The measured radial profiles of gas fraction at different axial positions in the plume were found to exhibit good similarity, and the distribution of the phases in the plume was correlated to the modified Froude number. Different regions of flow behavior in the plume were identified by changes in bubble frequency, bubble velocity, and bubble pierced length which occur as bubbles rise in the plume. Measurement of bubble velocity indicates that close to the nozzle the motion of the gas phase is strongly affected by the injection velocity; at injection velocities below 41 m/s, the velocity of the bubbles along the centerline exhibits an increase with height, while above, the tendency reverses. High-speed film observations suggest that this effect is related to the nature of gas discharge,i.e., whether the gas discharge produces single bubbles or short jets. In this region of developing flow, measurement of bubble frequency and pierced length indicates that break-up of the discharging bubbles occurs until a nearly constant bubble-size distribution is established in a region of fully developed flow. In this largest zone of the plume the bubbles influence the flow only through buoyancy, and the spectra of bubble pierced length and diameter can be fitted to a log-normal distribution. Close to the bath surface, a third zone of bubble motion behavior is characterized by a faster decrease in bubble velocity as liquid flows radially outward from the plume.

113 citations


Cited by
More filters
Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of impurities and dispersoids on the constitutive equations for Al alloys are briefly discussed and compared with carbon, micro-alloyed, tool and stainless steels and to ferritic steels which usually do not exhibit DRX.
Abstract: Constitutive equations including an Arrhenius term have been commonly applied to steels with the objective of calculating hot rolling and forging forces. The function relating stress and strain rate is generally the hyperbolic-sine since the power and exponential laws lose linearity at high and low stresses, respectively. In austenitic steels, the equations have been used primarily for the peak stress (strain) associated with dynamic recrystallization (DRX) but also for the critical and steady state stresses (strains) for nucleation and first wave completion of DRX. Since the peak strain is raised by the presence of solutes and fine particles, the stress is raised more than by simple strain hardening increase, thus causing a marked rise in activation energy in alloy steels. In contrast, large carbides, inclusions or segregates, if hard, may lower the peak strain as a result of particle stimulated nucleation. Due to the linear relation between stress and strain at the peak, flow curves can be calculated from the constitutive data with only one additional constant. Maximum pass stresses can also be calculated from a sinh constitutive equation determined in multistage torsion simulations of rolling schedules. Comparison is made between carbon, micro-alloyed, tool and stainless steels and to ferritic steels which usually do not exhibit DRX. Parallels to the effects of impurities and dispersoids on the constitutive equations for Al alloys are briefly discussed.

892 citations

Journal ArticleDOI
TL;DR: In this paper, the aluminum alloys 6063-T5 and T4 were friction-stir welded at different tool rotation speeds (R), and then distributions of the microstructure and hardness were examined in these welds.
Abstract: The aluminum (Al) alloys 6063-T5 and T4 were friction-stir welded at different tool rotation speeds (R), and then distributions of the microstructure and hardness were examined in these welds. The maximum temperature of the welding thermal cycle rose with increasing R values. The recrystallized grain size of the weld increased exponentially with increasing maximum temperature. The relationship between the grain size and the maximum temperature satisfied the static grain-growth equation. In the as-welded condition, 6063-T5 Al was softened around the weld center, whereas 6063-T4 Al showed homogeneous hardness profiles. Different R values did not result in significant differences in the hardness profile in these welds, except for the width of the softened region in the weld of 6063-T5 Al. Postweld aging raised the hardness in most parts of the welds, but the increase in hardness was small in the stir zone produced at the lower R values. Transmission electron microscope (TEM) observations detected a similar distribution of the strengthening precipitates in the grain interiors and the presence of a precipitation-free zone (PFZ) adjacent to the grain boundaries in all the welds. Microstructural analyses suggested that the small increase in hardness in the stir zone produced at the lower R values was caused by an increase in the volume fraction of PFZs.

411 citations

Journal ArticleDOI
TL;DR: In this paper, a model of heat transfer and solidification of the continuous casting of steel slabs is described, including phenomena in the mold and spray regions, which can be applied to a wide range of practical problems in continuous casters.
Abstract: A simple, but comprehensive model of heat transfer and solidification of the continuous casting of steel slabs is described, including phenomena in the mold and spray regions. The model includes a one-dimensional (1-D) transient finite-difference calculation of heat conduction within the solidifying steel shell coupled with two-dimensional (2-D) steady-state heat conduction within the mold wall. The model features a detailed treatment of the interfacial gap between the shell and mold, including mass and momentum balances on the solid and liquid interfacial slag layers, and the effect of oscillation marks. The model predicts the shell thickness, temperature distributions in the mold and shell, thickness of the resolidified and liquid powder layers, heat-flux profiles down the wide and narrow faces, mold water temperature rise, ideal taper of the mold walls, and other related phenomena. The important effect of the nonuniform distribution of superheat is incorporated using the results from previous three-dimensional (3-D) turbulent fluid-flow calculations within the liquid pool. The FORTRAN program CONID has a user-friendly interface and executes in less than 1 minute on a personal computer. Calibration of the model with several different experimental measurements on operating slab casters is presented along with several example applications. In particular, the model demonstrates that the increase in heat flux throughout the mold at higher casting speeds is caused by two combined effects: a thinner interfacial gap near the top of the mold and a thinner shell toward the bottom. This modeling tool can be applied to a wide range of practical problems in continuous casters.

381 citations