scispace - formally typeset
Search or ask a question
Author

J. K. Stille

Bio: J. K. Stille is an academic researcher from Colorado State University. The author has contributed to research in topics: Palladium & Aryl. The author has an hindex of 7, co-authored 11 publications receiving 844 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The coupling reaction of organotin reagents with vinyl epoxides, catalyzed by palladium, takes place at ambient temperatures, regioselectively, giving predominately the 1,4-addition product.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this Review, highlights of a number of selected syntheses are discussed, demonstrating the enormous power of these processes in the art of total synthesis and underscore their future potential in chemical synthesis.
Abstract: In studying the evolution of organic chemistry and grasping its essence, one comes quickly to the conclusion that no other type of reaction plays as large a role in shaping this domain of science than carbon-carbon bond-forming reactions. The Grignard, Diels-Alder, and Wittig reactions are but three prominent examples of such processes, and are among those which have undeniably exercised decisive roles in the last century in the emergence of chemical synthesis as we know it today. In the last quarter of the 20th century, a new family of carbon-carbon bond-forming reactions based on transition-metal catalysts evolved as powerful tools in synthesis. Among them, the palladium-catalyzed cross-coupling reactions are the most prominent. In this Review, highlights of a number of selected syntheses are discussed. The examples chosen demonstrate the enormous power of these processes in the art of total synthesis and underscore their future potential in chemical synthesis.

2,268 citations

Journal ArticleDOI
Chao-Jun Li1
TL;DR: Reaction of R,â-Unsaturated Carbonyl Compounds 3127: Reaction of R-UnSaturated Carbonies 3127 7.1.6.
Abstract: 4.2.8. Reductive Coupling 3109 5. Reaction of Aromatic Compounds 3110 5.1. Electrophilic Substitutions 3110 5.2. Radical Substitution 3111 5.3. Oxidative Coupling 3111 5.4. Photochemical Reactions 3111 6. Reaction of Carbonyl Compounds 3111 6.1. Nucleophilic Additions 3111 6.1.1. Allylation 3111 6.1.2. Propargylation 3120 6.1.3. Benzylation 3121 6.1.4. Arylation/Vinylation 3121 6.1.5. Alkynylation 3121 6.1.6. Alkylation 3121 6.1.7. Reformatsky-Type Reaction 3122 6.1.8. Direct Aldol Reaction 3122 6.1.9. Mukaiyama Aldol Reaction 3124 6.1.10. Hydrogen Cyanide Addition 3125 6.2. Pinacol Coupling 3126 6.3. Wittig Reactions 3126 7. Reaction of R,â-Unsaturated Carbonyl Compounds 3127

2,031 citations

Journal ArticleDOI
TL;DR: The recent academic developments in palladium-catalyzed carbonylation reactions of aromatic halides in the presence of various nucleophiles are summarized and the first industrial processes are summarized.
Abstract: Palladium-catalyzed carbonylation reactions of aromatic halides in the presence of various nucleophiles have undergone rapid development since the pioneering work of Heck and co-workers in 1974, such that nowadays a plethora of palladium catalysts are available for different carbonylative transformations. The carboxylic acid derivatives, aldehydes, and ketones prepared in this way are important intermediates in the manufacture of dyes, pharmaceuticals, agrochemicals, and other industrial products. In this Review, the recent academic developments in this area and the first industrial processes are summarized.

1,177 citations

Journal ArticleDOI
TL;DR: It has become increasingly apparent that the behavior of Lewis bases as agents for promoting chemical reactions is not merely as an electronic complement of the cognate Lewis acids: in fact Lewis bases are capable of enhancing both the electrophilic and nucleophilic character of molecules to which they are bound.
Abstract: The legacy of Gilbert Newton Lewis (1875-1946) pervades the lexicon of chemical bonding and reactivity. The power of his concept of donor-acceptor bonding is evident in the eponymous foundations of electron-pair acceptors (Lewis acids) and donors (Lewis bases). Lewis recognized that acids are not restricted to those substances that contain hydrogen (Bronsted acids), and helped overthrow the "modern cult of the proton". His discovery ushered in the use of Lewis acids as reagents and catalysts for organic reactions. However, in recent years, the recognition that Lewis bases can also serve in this capacity has grown enormously. Most importantly, it has become increasingly apparent that the behavior of Lewis bases as agents for promoting chemical reactions is not merely as an electronic complement of the cognate Lewis acids: in fact Lewis bases are capable of enhancing both the electrophilic and nucleophilic character of molecules to which they are bound. This diversity of behavior leads to a remarkable versatility for the catalysis of reactions by Lewis bases.

1,050 citations