scispace - formally typeset
Search or ask a question
Author

J. L. Ericksen

Bio: J. L. Ericksen is an academic researcher from University of Minnesota. The author has contributed to research in topics: Liquid crystal & Nonlinear system. The author has an hindex of 29, co-authored 55 publications receiving 5073 citations. Previous affiliations of J. L. Ericksen include Indiana University & United States Naval Research Laboratory.


Papers
More filters
Journal ArticleDOI
01 Mar 1961

824 citations

Journal ArticleDOI
TL;DR: For elastic bars, the authors discuss some material instabilities for a barre élastique, and discuté quelques instabilités matérielles.
Abstract: For elastic bars, we discuss some material instabilities.RésuméPour une barre élastique nous discutons quelques instabilités matérielles.

540 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a methodology for optimal shape design based on homogenization, which is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i.i.
Abstract: Optimal shape design of structural elements based on boundary variations results in final designs that are topologically equivalent to the initial choice of design, and general, stable computational schemes for this approach often require some kind of remeshing of the finite element approximation of the analysis problem. This paper presents a methodology for optimal shape design where both these drawbacks can be avoided. The method is related to modern production techniques and consists of computing the optimal distribution in space of an anisotropic material that is constructed by introducing an infimum of periodically distributed small holes in a given homogeneous, i~otropic material, with the requirement that the resulting structure can carry the given loads as well as satisfy other design requirements. The computation of effective material properties for the anisotropic material is carried out using the method of homogenization. Computational results are presented and compared with results obtained by boundary variations.

5,858 citations

Book ChapterDOI
01 Jan 1960

3,018 citations

Book
01 Jan 1992
TL;DR: A theory aiming to describe their mechanical behavior must take heed of their deformability and represent the definite principles it obeys as mentioned in this paper, which is not the case in modern physics, since it concerns solely the small particles of matter.
Abstract: Matter is commonly found in the form of materials. Analytical mechanics turned its back upon this fact, creating the centrally useful but abstract concepts of the mass point and the rigid body, in which matter manifests itself only through its inertia, independent of its constitution; “modern” physics likewise turns its back, since it concerns solely the small particles of matter, declining to face the problem of how a specimen made up of such particles will behave in the typical circumstances in which we meet it. Materials, however, continue to furnish the masses of matter we see and use from day to day: air, water, earth, flesh, wood, stone, steel, concrete, glass, rubber, ... All are deformable. A theory aiming to describe their mechanical behavior must take heed of their deformability and represent the definite principles it obeys.

2,644 citations

Journal ArticleDOI
TL;DR: HAL as discussed by the authors is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not, which may come from teaching and research institutions in France or abroad, or from public or private research centers.
Abstract: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Elastic materials with couple-stresses R. Toupin

2,574 citations