scispace - formally typeset
Search or ask a question
Author

J. M. Brett

Bio: J. M. Brett is an academic researcher from Australian National University. The author has contributed to research in topics: Stars & Giant star. The author has an hindex of 5, co-authored 6 publications receiving 2175 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the relations between colors of the JHKL systems of several observatories are examined, and linear relations are derived for transformation between the (J-K), (H, K, H, and L) colors in the different systems.
Abstract: The relations between colors of the JHKL systems of several observatories are examined, and linear relations are derived for transformation between the (J-K), (J-H), (H-K), and (K-L) colors in the different systems. A homogenized system is proposed, based on the systems of Glass (1984) and Johnson et al. (1966). The homogenized data sets are used to derive intrinsic colors for a number of giants and dwarfs. The passbands of several IR systems are estimated and the synthetic colors of the systems are compared using blackbody and stellar fluxes. The passbands were adjusted in wavelength to produce agreement with observed relations between different systems, making it possible to estimate the effective wavelengths of the different natural systems.

2,213 citations

Book ChapterDOI
TL;DR: In this paper, a Johnson-glass system is proposed and its absolute calibration derived based on the Bell model atmosphere fluxes for Alpha Lyrae, and the homogenized colors of the standard stars are used to derive intrinsic colors for stars with spectral types between B7V and M6V, and G7III and MSIII.
Abstract: The relations between colors of the JHKL systems of SAAO, ESO, CIT/CTIO, MSO, AAO and Arizona have been examined and linear relations derived to enable transformation between the J-K, J-H, H-K, and K-L colors in the different systems. A homogenized system, essentially the Johnson-Glass system is proposed and its absolute calibration derived based on the Bell model atmosphere fluxes for Alpha Lyrae. The homogenized colors of the standard stars were used to derive intrinsic colors for stars with spectral types between B7V and M6V, and G7III and MSIII. The JHKL passbands of the MSO IR system, derived from measured filter passbands and estimated atmospheric transmission values, were used to compute synthetic colors from relative absolute fluxes of some stars (including the sun). The reasonable agreement with the standardized JHKL colors indicates that these passbands can be adopted as representing the homogeneous system, and used to compute broad band IR colors from theoretical or observed fluxes. The passbands of other IR systems were similarly estimated from published data, and the synthetic colors were intercompared using black-body and stellar fluxes. These passbands were then adjusted in wavelength to produce agreement with the observed relations between different systems, enabling the effective wavelengths of the different natural systems to be established. Better effective wavelengths could be determined were spectrophotometry available for the very red stars with known broad band colors. The full text of this paper is published in Bessell and Brett (1988).

36 citations

Journal Article
TL;DR: In this paper, the authors calculate the number of couleurs in bandes larges et etroites d'une gamme de modeles d'atmosphere stellaire de type geante M. They analyse the gravite, the temperature, lextension de l'enveloppe et la metallicite.
Abstract: Calcul des couleurs en bandes larges et etroites d'une gamme de modeles d'atmosphere stellaire de type geante M. Ces couleurs synthetiques sont analysees en fonction de la gravite, la temperature, l'extension de l'enveloppe et la metallicite. Les resultats sont compares aux observations

8 citations

Journal Article
TL;DR: In this paper, the colors and stratifications of a grid of spherically extended M giant and supergiant model photospheres have been supplemented and interpolated in metallicity, gravity and photospheric extension so that they correspond to the parameter values of theoretical evolutionary (super-)giant branches for stars with masses of 1, 15, 225, 5, 10 and 15 M and metallicities log Z/Z of +05, 00, −03, −06 and −10
Abstract: Colors and stratifications of a grid of spherically extended M giant and supergiant model photospheres, described in Bessell M S et al (1989, Astron Astrophys Sup Ser, 77), have been supplemented and interpolated in metallicity, gravity and photospheric extension so that they correspond to the parameter values of theoretical evolutionary (super-)giant branches for stars with masses of 1, 15, 225, 5, 10 and 15 M ○ and metallicities log Z/Z ○ of +05, 00, −03, −06 and −10 These colors may be used, for example, for comparison with observed (super-)giant branches or for synthesizing integrated spectra of clusters and galaxies

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the observed properties of interstellar dust grains: the wavelength-dependent extinction of starlight, including absorption features, from UV to infrared; optical luminescence; and optical luminance.
Abstract: ▪ Abstract This review surveys the observed properties of interstellar dust grains: the wavelength-dependent extinction of starlight, including absorption features, from UV to infrared; optical lum...

2,288 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars were analyzed using optical spectra taken with the SMARTS 1.5m telescope.
Abstract: We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main sequence (pre-MS) stars using the F0 through M9 type members of nearby, negligibly reddened groups: η Cha cluster, TW Hydra Association, β Pic Moving Group, and Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5m telescope. Combining these new types with published spectral types, and photometry from the literature (Johnson-Cousins BV IC, 2MASS JHKS and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (Teff) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new Teff and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new Teff scale for pre-MS stars is within ≃100 K of dwarfs at a given spectral type for stars

1,811 citations

Journal ArticleDOI
TL;DR: In this article, a large set of theoretical isochrones are presented, whose distinctive features mostly reside on the greatly improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase.
Abstract: We present a large set of theoretical isochrones, whose distinctive features mostly reside on the greatly-improved treatment of the thermally-pulsing asymptotic giant branch (TP-AGB) phase. Essentially, we have coupled the TP-AGB tracks described in Paper I, at their stages of pre-flash quiescent H-shell burning, with the evolutionary tracks for the previous evolutionary phases from Girardi et al. (2000, AA the bell-shaped sequences in the Hertzsprung-Russell (HR) diagram for stars with hot-bottom burning; the changes of pulsation mode between fundamental and first overtone; the sudden changes of mean mass-loss rates as the surface chemistry changes from M- to C-type; etc. Theoretical isochrones are then converted to about 20 different photometric systems - including traditional ground-based systems, and those of recent major wide-field surveys such as SDSS, OGLE, DENIS, 2MASS, UKIDSS, etc., - by means of synthetic photometry applied to an updated library of stellar spectra, suitably extended to include C-type stars. Finally, we correct the predicted photometry for the effect of circumstellar dust during the mass-losing stages of the AGB evolution, which allows us to improve the results for the optical-to-infrared systems, and to simulate mid- and far-IR systems such as those of Spitzer and AKARI. We illustrate the most striking properties of these isochrones by means of basic comparisons with observational data for the Milky Way disc and the Magellanic Clouds. Access to the data is provided both via a web repository of static tables (http://stev.oapd.inaf.it/ dustyAGB07 and CDS), and via an interactive web interface (http://stev.oapd. inaf. it/cmd), which provides tables for any intermediate value of age and metallicity, for several photometric systems, and for different choices of dust properties.

1,740 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a series of nongray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K.
Abstract: We present the results of a new series of nongray calculations of the atmospheres, spectra, colors, and evolution of extrasolar giant planets (EGPs) and brown dwarfs for effective temperatures below 1300 K This theory encompasses most of the mass/age parameter space occupied by substellar objects and is the first spectral study down to 100 K These calculations are in aid of the multitude of searches being conducted or planned around the world for giant planets and brown dwarfs and reveal the exotic nature of the class Generically, absorption by H2 at longer wavelengths and H2O opacity windows at shorter wavelengths conspire to redistribute flux blueward Below 1200 K, methane is the dominant carbon bearing molecule and is a universal diagnostic feature of EGP and brown dwarf spectra We find that the primary bands in which to search are Z (~105 ?m), J (~12 ?m), H (~16 ?m), K (~22 ?m), M (~5 ?m), and N (~10 ?m), that enhancements of the emergent flux over blackbody values, in particular in the near infrared, can be by many orders of magnitude, and that the infrared colors of EGPs and brown dwarfs are much bluer than previously believed In particular, relative to J and H, the K band flux is reduced by CH4 and H2 absorption Furthermore, we conclude that for Teff's below 1200 K most or all true metals may be sequestered below the photosphere, that an interior radiative zone is a generic feature of substellar objects, and that clouds of H2O and NH3 are formed for Teff's below ~400 and ~200 K, respectively This study is done for solar-metallicity objects in isolation and does not include the effects of stellar insulation Nevertheless, it is a comprehensive attempt to bridge the gap between the planetary and stellar realms and to develop a nongray theory of objects from 03MJ (Saturn) to 70MJ (~007 M?) We find that the detection ranges for brown dwarf/EGP discovery of both ground- and space-based telescopes are larger than previously estimated

1,478 citations