scispace - formally typeset
Search or ask a question
Author

J. M. Hardwick

Bio: J. M. Hardwick is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Mitochondrial fission & Mitochondrion. The author has an hindex of 6, co-authored 6 publications receiving 2435 citations.

Papers
More filters
Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Lorenzo Galluzzi3, Stuart A. Aaronson4, John M. Abrams5, Emad S. Alnemri6, David W. Andrews7, Eric H. Baehrecke8, Nicolas G. Bazan9, Mikhail V. Blagosklonny10, Klas Blomgren11, Klas Blomgren12, Christoph Borner13, Dale E. Bredesen14, Dale E. Bredesen15, Catherine Brenner16, Maria Castedo3, Maria Castedo1, Maria Castedo2, John A. Cidlowski17, Aaron Ciechanover18, Gerald M. Cohen19, V De Laurenzi20, R De Maria21, Mohanish Deshmukh22, Brian David Dynlacht23, Wafik S. El-Deiry24, Richard A. Flavell25, Richard A. Flavell26, Simone Fulda27, Carmen Garrido2, Carmen Garrido28, Pierre Golstein16, Pierre Golstein29, Pierre Golstein2, Marie-Lise Gougeon30, Douglas R. Green, Hinrich Gronemeyer31, Hinrich Gronemeyer2, Hinrich Gronemeyer16, György Hajnóczky6, J. M. Hardwick32, Michael O. Hengartner33, Hidenori Ichijo34, Marja Jäättelä, Oliver Kepp1, Oliver Kepp2, Oliver Kepp3, Adi Kimchi35, Daniel J. Klionsky36, Richard A. Knight37, Sally Kornbluth38, Sharad Kumar, Beth Levine25, Beth Levine5, Stuart A. Lipton, Enrico Lugli17, Frank Madeo39, Walter Malorni21, Jean-Christophe Marine40, Seamus J. Martin41, Jan Paul Medema42, Patrick Mehlen16, Patrick Mehlen43, Gerry Melino19, Gerry Melino44, Ute M. Moll45, Ute M. Moll46, Eugenia Morselli3, Eugenia Morselli2, Eugenia Morselli1, Shigekazu Nagata47, Donald W. Nicholson48, Pierluigi Nicotera19, Gabriel Núñez36, Moshe Oren35, Josef M. Penninger49, Shazib Pervaiz50, Marcus E. Peter51, Mauro Piacentini44, Jochen H. M. Prehn52, Hamsa Puthalakath53, Gabriel A. Rabinovich54, Rosario Rizzuto55, Cecília M. P. Rodrigues56, David C. Rubinsztein57, Thomas Rudel58, Luca Scorrano59, Hans-Uwe Simon60, Hermann Steller61, Hermann Steller25, J. Tschopp62, Yoshihide Tsujimoto63, Peter Vandenabeele64, Ilio Vitale2, Ilio Vitale1, Ilio Vitale3, Karen H. Vousden65, Richard J. Youle17, Junying Yuan66, Boris Zhivotovsky67, Guido Kroemer1, Guido Kroemer2, Guido Kroemer3 
Institut Gustave Roussy1, French Institute of Health and Medical Research2, University of Paris-Sud3, Icahn School of Medicine at Mount Sinai4, University of Texas Southwestern Medical Center5, Thomas Jefferson University6, McMaster University7, University of Massachusetts Medical School8, LSU Health Sciences Center New Orleans9, Roswell Park Cancer Institute10, Boston Children's Hospital11, University of Gothenburg12, University of Freiburg13, Buck Institute for Research on Aging14, University of California, San Francisco15, Centre national de la recherche scientifique16, National Institutes of Health17, Technion – Israel Institute of Technology18, University of Leicester19, University of Chieti-Pescara20, Istituto Superiore di Sanità21, University of North Carolina at Chapel Hill22, New York University23, University of Pennsylvania24, Howard Hughes Medical Institute25, Yale University26, University of Ulm27, University of Burgundy28, Aix-Marseille University29, Pasteur Institute30, University of Strasbourg31, Johns Hopkins University32, University of Zurich33, University of Tokyo34, Weizmann Institute of Science35, University of Michigan36, University College London37, Duke University38, University of Graz39, Ghent University40, Trinity College, Dublin41, University of Amsterdam42, University of Lyon43, University of Rome Tor Vergata44, University of Göttingen45, Stony Brook University46, Kyoto University47, Merck & Co.48, Austrian Academy of Sciences49, National University of Singapore50, University of Chicago51, Royal College of Surgeons in Ireland52, La Trobe University53, University of Buenos Aires54, University of Padua55, University of Lisbon56, University of Cambridge57, University of Würzburg58, University of Geneva59, University of Bern60, Rockefeller University61, University of Lausanne62, Osaka University63, University of California, San Diego64, University of Glasgow65, Harvard University66, Karolinska Institutet67
TL;DR: A nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls is provided and the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells is emphasized.
Abstract: Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios Thus far, dozens of methods have been proposed to quantify cell death-related parameters However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells

2,218 citations

Journal ArticleDOI
TL;DR: Direct visual observation of mitochondrial fission and fusion events, together with computational approaches promise to provide new insight into how these processes interact with each other and with other mitochondrial and cellular processes.
Abstract: Maintenance of functional mitochondria requires fusion and fission of these dynamic organelles. The proteins that regulate mitochondrial dynamics are now associated with a broad range of cellular functions. Mitochondrial fission and fusion are often viewed as a finely tuned balance within cells, yet an integrated and quantitative understanding of how these processes interact with each other and with other mitochondrial and cellular processes is not well formulated. Direct visual observation of mitochondrial fission and fusion events, together with computational approaches promise to provide new insight.

129 citations

Journal ArticleDOI
07 Aug 2006-Oncogene
TL;DR: A growing body of new evidence suggests that cell death regulators also have ‘day jobs’ in healthy cells and caspases, mitochondrial fission proteins and pro-death Bcl-2 family proteins appear to have normal cellular functions that promote cell survival.
Abstract: At least in mammals, we have some understanding of how caspases facilitate mitochondria-mediated cell death, but the biochemical mechanisms by which other factors promote or inhibit programmed cell death are not understood. Moreover, most of these factors are only studied after treating cells with a death stimulus. A growing body of new evidence suggests that cell death regulators also have 'day jobs' in healthy cells. Even caspases, mitochondrial fission proteins and pro-death Bcl-2 family proteins appear to have normal cellular functions that promote cell survival. Here, we review some of the supporting evidence and stretch beyond the evidence to seek an understanding of the remaining questions.

71 citations

Journal ArticleDOI
TL;DR: It is reported that deletion of the FIS1 gene in yeast consistently results in acquisition of a secondary mutation that confers sensitivity to cell death, which drives the selection for specific compensatory mutations that confer defective growth control and cell death regulation, characteristic of human tumor cells.
Abstract: Genetic mutations affecting mitochondrial fission and fusion proteins cause human neurological disorders, but are assumed to be well tolerated in yeast. The conserved mitochondrial fission protein Dnm1/Drp1 is required for normal mitochondrial division, but also promotes cell death in mammals and yeast. Fis1, an outer mitochondrial membrane-anchored receptor for Dnm1/Drp1, also can promote cell death in mammals, but appears to have prosurvival activity in yeast. Here we report that deletion of the FIS1 gene in yeast consistently results in acquisition of a secondary mutation that confers sensitivity to cell death. In several independently derived FIS1 knockouts, tiling arrays and genomic sequencing identified the secondary mutation as a premature termination in the same stress-response gene, WHI2. The WHI2 mutation rescues the mitochondrial respiratory defect (petite formation) caused by FIS1 deficiency, but also causes a failure to suppress cell growth during amino-acid deprivation. Thus, loss of Fis1 drives the selection for specific compensatory mutations that confer defective growth control and cell death regulation, characteristic of human tumor cells. The important long-term survival function of Fis1 that is compensated by WHI2 mutation appears to be independent of fission factor Dnm1/Drp1 and its adaptor Mdv1, but may be mediated through a second adaptor Caf4, as WHI2 is also mutated in a CAF4 knockout.

62 citations

Journal ArticleDOI
TL;DR: This study revisited the topic of gene-dependent cell death in yeast to determine the prevalence of yeast genes with the capacity to contribute to cell-autonomous death, and identified over 800 yeast knockout strains that exhibit significantly increased survival following insult, implying that these genes can contribute tocell death.
Abstract: Caspase-dependent apoptotic cell death has been extensively studied in cultured cells and during embryonic development, but the existence of analogous molecular pathways in single-cell species is uncertain. This has reduced enthusiasm for applying the advanced genetic tools available for yeast to study cell death regulation. However, partial characterization in mammals of additional genetically encoded cell death mechanisms, which lead to a range of dying cell morphologies and necrosis, suggests potential applications for yeast genetics. In this light, we revisited the topic of gene-dependent cell death in yeast to determine the prevalence of yeast genes with the capacity to contribute to cell-autonomous death. We developed a rigorous strategy by allowing sufficient time for gene-dependent events to occur, but insufficient time to evolve new populations, and applied this strategy to the Saccharomyces cerevisiae gene knockout collection. Unlike sudden heat shock, a ramped heat stimulus delivered over several minutes with a thermocycler, coupled with assessment of viability by automated counting of microscopic colonies revealed highly reproducible gene-specific survival phenotypes, which typically persist under alternative conditions. Unexpectedly, we identified over 800 yeast knockout strains that exhibit significantly increased survival following insult, implying that these genes can contribute to cell death. Although these death mechanisms are yet uncharacterized, this study facilitates further exploration.

44 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Abstract: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms Recent reviews have described the range of assays that have been used for this purpose(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi) Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response

2,310 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations