scispace - formally typeset
Search or ask a question
Author

J.M. Slaughter

Bio: J.M. Slaughter is an academic researcher from Freescale Semiconductor. The author has contributed to research in topics: Magnetoresistive random-access memory & Tunnel junction. The author has an hindex of 10, co-authored 13 publications receiving 753 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 4Mb magnetoresistive random access memory (MRAM) with a novel magnetic bit cell and toggle switching mode is presented, which greatly improves the operational performance of the MRAM as compared to conventional MRAM.
Abstract: A 4-Mb magnetoresistive random access memory (MRAM) with a novel magnetic bit cell and toggle switching mode is presented. The circuit was designed in a five level metal, 0.18-mum complementary metal-oxide-semiconductor process with a bit cell size of 1.55 mum2. The new bit cell uses a balanced synthetic antiferromagnetic free layer and a phased write pulse sequence to provide robust switching performance with immunity from half-select disturbs. This switching mode greatly improves the operational performance of the MRAM as compared to conventional MRAM. A detailed description of this 4-Mb toggle MRAM is presented

514 citations

Journal ArticleDOI
TL;DR: In this paper, the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance was reported.
Abstract: We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible.We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlOx barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlOx. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlOx to a circuit-limited 17 ns with MgO.

91 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed an analysis method for evaluating thermal endurance of synthetic antiferromagnet (SAF) structures and showed that failure of the SAF can be modeled as a thermally activated diffusion process.
Abstract: Synthetic antiferromagnet (SAF) structures are a key element of TMR and GMR read heads and MRAM devices. Control of the SAF coupling strength and thermal endurance are key issues for these technologies. We find that the coupling strength increases with stronger crystalline texture in polycrystalline NiFe SAFs, and, surprisingly, we observe a strong dependence on seed layer in amorphous CoFeB SAFs. We also have developed an analysis method for evaluating thermal endurance of SAFs and show that failure of the SAF can be modeled as a thermally activated diffusion process. The analysis is used to predict the time to failure at any temperature, thus allowing accelerated failure analysis for SAF-based devices. The stability improves dramatically with increasing Ru spacer thickness. The time to failure for typical NiFe SAFs was found to be >10 years at 120/spl deg/C.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the failure of WKB models to yield physically reasonable barrier parameters originates from an experimentally unavoidable distribution of barrier thicknesses, possibly acting synergistically with the band structure of the barrier material.
Abstract: The tunneling conductance of three varieties of $\mathrm{Co}\mathrm{Fe}\mathrm{B}∕\mathrm{Mg}\mathrm{O}∕\mathrm{Co}\mathrm{Fe}\mathrm{B}$ magnetic tunnel junctions depends quadratically on the applied voltage to anomalously high biases. Within the framework traditional of WKB models, this implies unphysical tunnel barrier parameters: heights near $20\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$, or widths corresponding to fewer than two MgO lattice constants. We demonstrate that the failure of such models to yield physically reasonable parameters originates from an experimentally unavoidable distribution of barrier thicknesses, possibly acting synergistically with the band structure of the barrier material. This implies that existing WKB models may lead to physically incorrect barrier parameters for contemporary tunnel junctions, magnetic or otherwise.

33 citations

Proceedings ArticleDOI
05 Dec 2005
TL;DR: The first integration of a new generation of high magnetoresistance-ratio (MR) magnetic tunnel junction (MTJ) material with a 90 nm CMOS front-end logic process was reported in this paper.
Abstract: We report here the first integration of a new generation of high magnetoresistance-ratio (MR) magnetic tunnel junction (MTJ) material with a 90 nm CMOS front-end logic process This new material, with MgO tunnel barriers, significantly increased the read signal over standard AlOx-based material The 90 nm CMOS test vehicle has 8 kb arrays of 1T1MTJ memory cells with two orthogonal program lines oriented at 45deg from the bit easy axis for toggle switching Read and toggle-write operations are demonstrated

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials, allowing faster, low-energy operations: spin electronics is on its way.
Abstract: Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.

2,191 citations

Journal ArticleDOI
09 Sep 2005-Science
TL;DR: “Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics.
Abstract: “Spintronics,” in which both the spin and charge of electrons are used for logic and memory operations, promises an alternate route to traditional semiconductor electronics. A complete logic architecture can be constructed, which uses planar magnetic wires that are less than a micrometer in width. Logical NOT, logical AND, signal fan-out, and signal cross-over elements each have a simple geometric design, and they can be integrated together into one circuit. An additional element for data input allows information to be written to domain-wall logic circuits.

1,955 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent works that have addressed how to manipulate and detect the magnetic state of an antiferromagnet efficiently and briefly mentions the broader context of spin transport, magnetic textures and dynamics, and materials research.
Abstract: Antiferromagnetic materials are magnetic inside, however, the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets invisible on the outside. It also implies that if information was stored in antiferromagnetic moments it would be insensitive to disturbing external magnetic fields, and the antiferromagnetic element would not affect magnetically its neighbors no matter how densely the elements were arranged in a device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. The outstanding question is how to efficiently manipulate and detect the magnetic state of an antiferromagnet. In this article we give an overview of recent works addressing this question. We also review studies looking at merits of antiferromagnetic spintronics from a more general perspective of spin-ransport, magnetization dynamics, and materials research, and give a brief outlook of future research and applications of antiferromagnetic spintronics.

1,737 citations

Journal ArticleDOI
TL;DR: The phenomenology of exchange bias and related effects in nanostructures is reviewed in this paper, where the main applications of exchange biased nanostructure are summarized and the implications of the nanometer dimensions on some of the existing exchange bias theories are briefly discussed.

1,721 citations

Journal ArticleDOI
Geoffrey W. Burr1, B. N. Kurdi1, J. C. Scott1, Chung H. Lam1, Kailash Gopalakrishnan1, R. S. Shenoy1 
TL;DR: In this article, the authors review the candidate solid-state nonvolatile memory technologies that potentially could be used to construct a storage-class memory (SCM) and compare the potential for practical scaling to ultrahigh effective areal density for each of these candidate technologies.
Abstract: Storage-class memory (SCM) combines the benefits of a solid-state memory, such as high performance and robustness, with the archival capabilities and low cost of conventional hard-disk magnetic storage. Such a device would require a solid-state nonvolatile memory technology that could be manufactured at an extremely high effective areal density using some combination of sublithographic patterning techniques, multiple bits per cell, and multiple layers of devices. We review the candidate solid-state nonvolatile memory technologies that potentially could be used to construct such an SCM. We discuss evolutionary extensions of conventional flash memory, such as SONOS (silicon-oxide-nitride-oxide-silicon) and nanotraps, as well as a number of revolutionary new memory technologies. We review the capabilities of ferroelectric, magnetic, phase-change, and resistive random-access memories, including perovskites and solid electrolytes, and finally organic and polymeric memory. The potential for practical scaling to ultrahigh effective areal density for each of these candidate technologies is then compared.

659 citations