scispace - formally typeset
Search or ask a question
Author

J. Magorrian

Other affiliations: University of Cambridge
Bio: J. Magorrian is an academic researcher from University of Toronto. The author has contributed to research in topics: Galaxy & Velocity dispersion. The author has an hindex of 6, co-authored 9 publications receiving 4524 citations. Previous affiliations of J. Magorrian include University of Cambridge.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Abstract: We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio , and a central massive dark object (MDO) of arbitrary mass M•. They provide acceptable fits to 32 of the galaxies for some value of M• and ; the four galaxies that cannot be fitted have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fitted galaxies are consistent with the fundamental-plane correlation ∝ L0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M• ~ 0.006Mbulge ≡ 0.006L. Five of the six galaxies consistent with M• = 0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M•. We predict the second-moment profiles that should be observed at HST resolution for the 32 galaxies that our models describe well. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f 0.97 of early-type galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M•/Mbulge) of mean -2.28 and standard deviation ~0.51. There is also marginal evidence that M• is distributed differently for core and power law galaxies, with core galaxies having a somewhat steeper dependence on Mbulge.

3,976 citations

Journal ArticleDOI
TL;DR: In this paper, the authors fit axisymmetric three-integral dynamical models to NGC 3379 using the line-of-sight velocity distribution obtained from Hubble Space Telescope FOS spectra of the galaxy center and ground-based long-slit spectroscopy along four position angles.
Abstract: We fit axisymmetric three-integral dynamical models to NGC 3379 using the line-of-sight velocity distribution obtained from Hubble Space Telescope FOS spectra of the galaxy center and ground-based long-slit spectroscopy along four position angles, with the light distribution constrained by WFPC2 and ground-based images. We have fitted models with inclinations from 29° (intrinsic galaxy type E5) to 90° (intrinsic E1) and black hole masses from 0 to 109 M⊙. The best-fit black hole masses range from 6 × 107 to 2 × 108 M⊙, depending on inclination. The preferred inclination is 90° (edge-on); however, the constraints on allowed inclination are not very strong, owing to our assumption of constant M/LV. The velocity ellipsoid of the best model is not consistent with either isotropy or a two-integral distribution function. Along the major axis, the velocity ellipsoid becomes tangential at the innermost bin, radial in the midrange radii, and tangential again at the outermost bins. The rotation rises quickly at small radii owing to the presence of the black hole. For the acceptable models, the radial-to-tangential [(σ + σ)/2] dispersion in the midrange radii ranges over 1.1 < σr/σt < 1.7, with the smaller black holes requiring larger radial anisotropy. Compared with these three-integral models, two-integral isotropic models overestimate the black hole mass since they cannot provide adequate radial motion. However, the models presented in this paper still contain restrictive assumptions—namely, assumptions of constant M/LV and spheroidal symmetry—requiring yet more models to study black hole properties in complete generality.

238 citations

Journal ArticleDOI
TL;DR: In this paper, the distribution of luminous and dark matter in Coma early-type galaxies was studied using Lick absorption line indices, and it was shown that the tilt in the fundamental plane can be explained by systematic variations of the total (stellar + dark) mass inside the effective radius.
Abstract: This work aims to study the distribution of luminous and dark matter in Coma early-type galaxies. Dynamical masses obtained under the assumption that mass follows light do not match with the masses of strong gravitational lens systems of similar velocity dispersions. Instead, dynamical fits with dark matter halos are in good agreement with lensing results. We derive mass-to-light ratios of the stellar populations from Lick absorption line indices, reproducing well the observed galaxy colours. Even in dynamical models with dark matter halos the amount of mass that follows the light increases more rapidly with galaxy velocity dispersion than expected for a constant stellar initial mass function (IMF). While galaxies around sigma ~ 200 km/s are consistent with a Kroupa IMF, the same IMF underpredicts luminous dynamical masses of galaxies with sigma ~ 300 km/s by a factor of two and more. A systematic variation of the stellar IMF with galaxy velocity dispersion could explain this trend with a Salpeter IMF for the most massive galaxies. If the IMF is instead constant, then some of the dark matter in high velocity dispersion galaxies must follow a spatial distribution very similar to that of the light. A combination of both, a varying IMF and a component of dark matter that follows the light is possible as well. For a subsample of galaxies with old stellar populations we show that the tilt in the fundamental plane can be explained by systematic variations of the total (stellar + dark) mass inside the effective radius. We tested commonly used mass estimator formulae, finding them accurate at the 20-30% level.

181 citations

Journal ArticleDOI
TL;DR: In this paper, a one-parameter family of spherical models with different constant velocity dispersion anisotropy was used to analyze the full (R,v) dataset of galaxy positions and velocities in an attempt to break this degeneracy.
Abstract: In the context of the CNOC1 cluster survey, redshifts were obtained for galaxies in 16 clusters. The resulting sample is ideally suited for an analysis of the internal velocity and mass distribution of clusters. Previous analyses of this dataset used the Jeans equation to model the projected velocity dispersion profile. However, the results of such an analysis always yield a strong degeneracy between the mass density profile and the velocity dispersion anisotropy profile. Here we analyze the full (R,v) dataset of galaxy positions and velocities in an attempt to break this degeneracy. We build an `ensemble cluster' from the individual clusters under the assumption that they form a homologous sequence. To interpret the data we study a one-parameter family of spherical models with different constant velocity dispersion anisotropy. The best-fit model is sought using a variety of statistics, including the overall likelihood of the dataset. Although the results of our analysis depend slightly on which statistic is used to judge the models, all statistics agree that the best-fit model is close to isotropic. This result derives primarily from the fact that the observed grand-total velocity histogram is close to Gaussian, which is not expected to be the case for a strongly anisotropic model. The best-fitting models have a mass-to-number-density ratio that is approximately independent of radius over the range constrained by the data. They also have a mass-density profile that is consistent with the dark matter halo profile advocated by Navarro, Frenk & White, in terms of both the profile shape and the characteristic scale length. This adds important new weight to the evidence that clusters do indeed follow this proposed universal mass density profile. [Abridged]

159 citations

Journal ArticleDOI
TL;DR: The stellar kinematics of the low-luminosity elliptical galaxy NGC 4486B have been measured in this article with the Canada-France-Hawaii Telescope and Subarcsecond Imaging Spectrograph.
Abstract: The stellar kinematics of the low-luminosity elliptical galaxy NGC 4486B have been measured in seeing σ* = 022 with the Canada-France-Hawaii Telescope and Subarcsecond Imaging Spectrograph. Lauer and collaborators have shown that NGC 4486B is similar to M31 in having a double nucleus. Here we show that it also resembles M31 in its kinematics. Like M31, NGC 4486B rotates fairly rapidly near the center (V = 76 ± 7 km s-1 at 06) but more slowly farther out (V 20 ± 6 km s-1 at r 4''). Also, the velocity dispersion gradient is very steep: σ increases from 116 ± 6 km s-1 at r = 2''-6'' to σ = 281 ± 11 km s-1 at the center. This is much higher than expected for an elliptical galaxy of absolute magnitude MB -16.8: even more than M31, NGC 4486B is far above the scatter in the Faber-Jackson correlation between σ and bulge luminosity. Therefore, the King core mass-to-light ratio, M/LV 20, is unusually high compared with normal values for old stellar populations (M/LV = 4 ± 1 at MB -17). We construct simple dynamical models with isotropic velocity dispersions and show that they reproduce black hole (BH) masses derived by more detailed methods. We also fit axisymmetric, three-integral models. Isotropic models imply that NGC 4486B contains a central dark object, probably a BH, of mass M• = 6+ 3−2 × 108 M☉. However, anisotropic models fit the data without a BH if the ratio of radial to azimuthal dispersions is ~2 at r 1''. Therefore, this is a less strong BH detection than the ones in M31, M32, and NGC 3115. A dark mass of 6 × 108 M☉ is ~9% of the mass Mbulge in stars; even if M• is somewhat smaller than the isotropic value, M•/Mbulge is likely to be unusually large. Double nuclei are a puzzle because the dynamical friction timescales for self-gravitating star clusters in close orbit around each other are short. Since both M31 and NGC 4486B contain central dark objects, our results support models in which the survival of a double nucleus is connected with the presence of a BH. For example, they support the Keplerian eccentric disk model due to Tremaine.

115 citations


Cited by
More filters
Journal ArticleDOI
02 Jun 2005-Nature
TL;DR: It is shown that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.
Abstract: The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

4,814 citations

Journal ArticleDOI
TL;DR: The mass of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05.
Abstract: The masses of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05 The relation is much tighter than the relation between Mbh and bulge luminosity, with a scatter no larger than expected on the basis of measurement error alone Black hole masses recently estimated by Magorrian et al lie systematically above the Mbh-σ relation defined by more accurate mass estimates, some by as much as 2 orders of magnitude The tightness of the Mbh-σ relation implies a strong link between black hole formation and the properties of the stellar bulge

4,557 citations

Journal ArticleDOI
TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Abstract: We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio , and a central massive dark object (MDO) of arbitrary mass M•. They provide acceptable fits to 32 of the galaxies for some value of M• and ; the four galaxies that cannot be fitted have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fitted galaxies are consistent with the fundamental-plane correlation ∝ L0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M• ~ 0.006Mbulge ≡ 0.006L. Five of the six galaxies consistent with M• = 0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M•. We predict the second-moment profiles that should be observed at HST resolution for the 32 galaxies that our models describe well. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f 0.97 of early-type galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M•/Mbulge) of mean -2.28 and standard deviation ~0.51. There is also marginal evidence that M• is distributed differently for core and power law galaxies, with core galaxies having a somewhat steeper dependence on Mbulge.

3,976 citations

Journal ArticleDOI
TL;DR: In this paper, a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius is described.
Abstract: We describe a correlation between the mass Mbh of a galaxy's central black hole and the luminosity-weighted line-of-sight velocity dispersion σe within the half-light radius. The result is based on a sample of 26 galaxies, including 13 galaxies with new determinations of black hole masses from Hubble Space Telescope measurements of stellar kinematics. The best-fit correlation is Mbh = 1.2(±0.2) × 108 M☉(σe/200 km s-1)3.75 (±0.3) over almost 3 orders of magnitude in Mbh; the scatter in Mbh at fixed σe is only 0.30 dex, and most of this is due to observational errors. The Mbh-σe relation is of interest not only for its strong predictive power but also because it implies that central black hole mass is constrained by and closely related to properties of the host galaxy's bulge.

3,901 citations

Journal ArticleDOI
10 Feb 2005-Nature
TL;DR: Simulations that simultaneously follow star formation and the growth of black holes during galaxy–galaxy collisions find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar.
Abstract: In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

3,330 citations