scispace - formally typeset
Search or ask a question
Author

J. Menniger

Bio: J. Menniger is an academic researcher. The author has contributed to research in topics: Incandescent light bulb & Light-emitting diode. The author has an hindex of 2, co-authored 3 publications receiving 1718 citations.

Papers
More filters
Journal ArticleDOI
24 Aug 2000-Nature
TL;DR: It is demonstrated that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency, which is expected to pave the way towards highly efficient white LEDs.
Abstract: Compact solid-state lamps based on light-emitting diodes (LEDs) are of current technological interest as an alternative to conventional light bulbs The brightest LEDs available so far emit red light and exhibit higher luminous efficiency than fluorescent lamps If this luminous efficiency could be transferred to white LEDs, power consumption would be dramatically reduced, with great economic and ecological consequences But the luminous efficiency of existing white LEDs is still very low, owing to the presence of electrostatic fields within the active layers These fields are generated by the spontaneous and piezoelectric polarization along the [0001] axis of hexagonal group-III nitrides--the commonly used materials for light generation Unfortunately, as this crystallographic orientation corresponds to the natural growth direction of these materials deposited on currently available substrates Here we demonstrate that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency We expect that this approach will pave the way towards highly efficient white LEDs

1,757 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the lines lowest in energy are due to an additional free-to-bound transition, involving an impurity different from those related to the donor-acceptor transition, and its phonon replica.
Abstract: Spatially resolved cathodoluminescence (CL) spectroscopy in connection with scanning electron microscopy performed on cubic (c) GaN between 5 and 300 K reveals that at low temperatures the CL spectra of c‐GaN single crystals consist of four well‐separated lines. The two lines highest in energy were previously identified as excitonic and donor‐acceptor transitions, respectively. Here, we show that the lines lowest in energy are due to an additional free‐to‐bound transition, involving an impurity different from those related to the donor‐acceptor transition, and its phonon replica. The CL spectra of c‐GaN layers, while being rather broad, are composed of these four lines. Moreover, at 300 K the spectra of the layers and of the crystals are both dominated by the excitonic transition and closely resemble each other.

21 citations

Journal ArticleDOI
TL;DR: In this paper, the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction was shown to improve the luminous efficiency of white LEDs.
Abstract: Compact solid-state lamps based on light-emitting diodes (LEDs) are of current technological interest as an alternative to conventional light bulbs. The brightest LEDs available so far emit red light and exhibit higher luminous efficiency than fluorescent lamps. If this luminous efficiency could be transferred to white LEDs, power consumption would be dramatically reduced, with great economic and ecological consequences. But the luminous efficiency of existing white LEDs is still very low, owing to the presence of electrostatic fields within the active layers. These fields are generated by the spontaneous and piezoelectric polarization along the [0001] axis of hexagonal group-III nitrides--the commonly used materials for light generation. Unfortunately, as this crystallographic orientation corresponds to the natural growth direction of these materials deposited on currently available substrates. Here we demonstrate that the epitaxial growth of GaN/(Al,Ga)N on tetragonal LiAlO2 in a non-polar direction allows the fabrication of structures free of electrostatic fields, resulting in an improved quantum efficiency. We expect that this approach will pave the way towards highly efficient white LEDs.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: More than one-fifth of US electricity is used to power artificial lighting as discussed by the authors and light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.
Abstract: More than one-fifth of US electricity is used to power artificial lighting. Light-emitting diodes based on group III/nitride semiconductors are bringing about a revolution in energy-efficient lighting.

1,779 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.
Abstract: Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society—for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1–3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6–9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved—values that approach those of the best-performing organic LEDs. The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.

1,404 citations

Journal ArticleDOI
TL;DR: In this article, the basic principles of x-ray diffraction of thin films and areas of special current interest, such as analysis of non-polar, semipolar and cubic III-nitrides, are reviewed, along with the basic principle of X-ray diffusion of thin thin films, and some useful values needed in calculations, including elastic constants and lattice parameters.
Abstract: The III-nitrides include the semiconductors AlN, GaN and InN, which have band gaps spanning the entire UV and visible ranges. Thin films of III-nitrides are used to make UV, violet, blue and green light-emitting diodes and lasers, as well as solar cells, high-electron mobility transistors (HEMTs) and other devices. However, the film growth process gives rise to unusually high strain and high defect densities, which can affect the device performance. X-ray diffraction is a popular, non-destructive technique used to characterize films and device structures, allowing improvements in device efficiencies to be made. It provides information on crystalline lattice parameters (from which strain and composition are determined), misorientation (from which defect types and densities may be deduced), crystallite size and microstrain, wafer bowing, residual stress, alloy ordering, phase separation (if present) along with film thicknesses and superlattice (quantum well) thicknesses, compositions and non-uniformities. These topics are reviewed, along with the basic principles of x-ray diffraction of thin films and areas of special current interest, such as analysis of non-polar, semipolar and cubic III-nitrides. A summary of useful values needed in calculations, including elastic constants and lattice parameters, is also given. Such topics are also likely to be relevant to other highly lattice-mismatched wurtzite-structure materials such as heteroepitaxial ZnO and ZnSe.

925 citations

Journal ArticleDOI
TL;DR: In this paper, a light-emitting diodes with emission wavelengths less than 400 nm have been developed using the AlInGaN material system, where alloy compositions with a greater aluminium content are required.
Abstract: Light-emitting diodes with emission wavelengths less than 400 nm have been developed using the AlInGaN material system. For devices operating at shorter wavelengths, alloy compositions with a greater aluminium content are required. The material properties of these materials lie on the border between conventional semiconductors and insulators, which adds a degree of complexity to the development of efficient light-emitting devices. A number of technical developments have enabled the fabrication of LEDs based on group three nitrides (III-nitrides) that emit in the UV part of the spectrum, providing useful tools for a wealth of applications in optoelectronic systems.

872 citations