scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the nonlinear mechanics of sandwich plates are studied using a layerwise third-order thickness and shear deformation theory, where the two face sheets are modelled using a second-order shear-deformation theory (well-justified in case of a zero-shear stress only at one outer surface).

13 citations

Journal ArticleDOI
TL;DR: A plate bending element based on the generalized laminate plate theory (GLPT) is used to evaluate new composite laminates known as the ARALL-1 ® Laminates as mentioned in this paper.

13 citations

Journal ArticleDOI
TL;DR: In this paper, a stress-based least-squares finite-element formulation for the solution of Navier-Stokes equations governing flows of viscous incompressible fluids is presented.
Abstract: In this paper we present a stress-based least-squares finite-element formulation for the solution of the Navier–Stokes equations governing flows of viscous incompressible fluids. Stress components are introduced as independent variables to make the system first order. Continuity equation becomes an algebraic equation and is eliminated from the system with suitable modifications. The h and p convergence are verified using the exact solution of Kovasznay flow. Steady flow past a large circular cylinder in a channel is solved to test mass conservation. Transient flow over a backward-facing step problem is solved on several meshes. Results are compared with that obtained using vorticity-based first-order formulation for both benchmark problems. Copyright © 2007 John Wiley & Sons, Ltd.

13 citations

Journal ArticleDOI
TL;DR: In this article, the p-Ritz method was used for bending and vibration analysis of thin plates and it was found that the distributions of the twisting moment and shear forces contain unacceptable oscillations, and for plates with free edges these stress resultants do not satisfy the natural boundary conditions.
Abstract: This paper highlights the problems encountered in bending and vibration analysis of thin plates when using the p-Ritz method for computing the stress resultants, especially the twisting moments and shear forces. In the p-Ritz method, products of mathematically complete two-dimensional polynomial functions and boundary polynomial equations raised to appropriate powers are used to approximate the displacements. This ensures the satisfaction of the geometric boundary conditions. However, it is found that the distributions of the twisting moment and shear forces contain unacceptable oscillations, and for plates with free edges these stress resultants do not satisfy the natural boundary conditions. A method to overcome the aforementioned problems is proposed here. The penalty function method is used to satisfy the natural boundary conditions and postprocessing of the stress resultants to eliminate the oscillations. Some examples of static and vibration problems of plates are presented to illustrate the effectiveness of the proposed strategy for overcoming the shortcomings inherent in the p-Ritz method.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the properties of the central nanotube (neat or functionalized) which is embedded in a matrix material are estimated using molecular dynamics simulations and these interactions are subsequently idealized into a homogenized model.

13 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations