scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a derivative-free balance law is derived using a probabilistic projection technique, which exploits certain micro-structural information in a weakly unique manner, and can be interpreted as a discrete CauchyBorn map with the structure of the classical deformation gradient emerging in the infinitesimal limit.
Abstract: Notwithstanding its recent focus on microstructure-driven nonclassical aspects, a breakthrough model in continuum mechanics that can evolve the macroscopic deformation of a solid body undergoing fracture whilst systematically incorporating the microstructural information remains elusive. In addressing this issue, we presently obtain, based on the molecular level information, a derivativefree balance law pertaining to a higher scale of interest and useful in a continuum or discrete setting. Derived using a probabilistic projection technique, the law exploits certain microstructural information in a weakly unique manner. The projection generalizes the notion of directional derivative and, depending on the application, may be interpreted as a discrete CauchyBorn map with the structure of the classical deformation gradient emerging in the infinitesimal limit. As an illustration, we use the Tersoff-Brenner potential and obtain a discrete macroscopic model for studying the deformation of a singlewalled carbon nanotube (SWCNT). The macroscopic (or continuum) model shows the effect of chirality - a molecular phenomenon - in its deformation profile. We also demonstrate the deformation of a fractured SWCNT, which is a firstofitskind simulation, and predict crack branching phenomena in agreement with molecular dynamics simulations. As another example, we have included simulation results for fractured SWCNT bundle with a view to establishing our claim regarding the efficacy of the proposed method. (C) 2018 Elsevier Ltd. All rights reserved.

9 citations

Journal ArticleDOI
01 Jan 1972
TL;DR: In this article, the concept of conjugate approximation functions is generalized to mixed formulations of linear boundary value problems and Biorthogonal basis functions are generated using two distinct finite element models of the domain of a given function.
Abstract: The concept of conjugate approximation functions is generalized to mixed formulations of linear boundary value problems. Biorthogonal basis functions are generated using two distinct finite-element models of the domain of a given function. Various special cases are considered. It is shown that four distinct models can be developed corresponding to a single linear operator. A comparison of the concepts of the hypercircle and conjugate approximation is given.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented constitutive theories for the stress tensor and the heat vector for homogeneous, isotropic thermoelastic solids in Lagrangian description for finite deformation.
Abstract: This article presents constitutive theories for the stress tensor and the heat vector for homogeneous, isotropic thermoelastic solids in Lagrangian description for finite deformation. The deforming solid is assumed to be in thermodynamic equilibrium during the evolution. Since conservation of mass, balance of momenta, and balance of energy are independent of the constitution of the matter, the second law of thermodynamics must form the basis for deriving the constitutive theories. We introduce the concept of rate constitutive theory and show that for thermoelastic solids the constitutive theories are, in fact, rate theories of order zero. These theories for stress tensor consider material derivative of order zero of the conjugate strain tensor as one of the argument tensors of the stress tensor established as a dependent variable in the constitutive theory. Generalization of this concept leading to higher order rate theories in Lagrangian description are considered in followup works [1, 2]. The conditions...

9 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations