scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the micro-inertia term is used to describe the viscoplastic response of polycrystalline solids under high strain rates, which has a second order time derivative term.
Abstract: For visco-plasticity in polycrystalline solids under high strain rates, we introduce a dynamic flow rule (also called the micro-force balance) that has a second order time derivative term in the form of micro-inertia. It is revealed that this term, whose physical origin is traced to dynamically evolving dislocations, has a profound effect on the macro-continuum plastic response. Based on energy equivalence between the micro-part of the kinetic energy and that associated with the fictive dislocation mass in the continuous dislocation distribution (CDD) theory, an explicit expression for the micro-inertial length scale is derived. The micro-force balance together with the classical momentum balance equations thus describes the viscoplastic response of the isotropic polycrystalline material. Using rational thermodynamics, we arrive at constitutive equations relating the thermodynamic forces (stresses) and fluxes. A consistent derivation of temperature evolution is also provided, thus replacing the empirical route. The micro-force balance, supplemented with the constitutive relations for the stresses, yields a locally hyperbolic flow rule owing to the micro-inertia term. The implication of micro-inertia on the continuum response is explicitly demonstrated by reproducing experimentally observed stress–strain responses under high strain-rate loadings and varying temperatures. An interesting finding is the identification of micro-inertia as the source of oscillations in the stress–strain response under high strain rates.

8 citations

Journal ArticleDOI
P.M. Wung1, J. N. Reddy1
TL;DR: In this article, a finite element model with a strain/stress recovery technique is developed in such a way that nonzero surface traction boundary conditions and interlaminar shear stress continuity conditions are all satisfied identically.

8 citations

Journal ArticleDOI
TL;DR: In this paper, the penalty-Galerkin finite element method is used to simulate the flow of a polystyrene melt over a rectangular slot placed perpendicular to the flow direction, and good agreement is still found between predicted values of stress using the coarse mesh and those measured by means of flow birefringence.
Abstract: The penalty‐Galerkin finite‐element method is used to simulate the flow of a polystyrene melt over a rectangular slot placed perpendicular to the flow direction. The White‐Metzner constitutive equation is used with a Carreau model viscosity function and a shear rate‐dependent relaxation time defined so that the primary normal stress difference is exactly reproduced by the model in simple shear flow. Values of the stress field predicted by the simulation are compared with those obtained experimentally by means of flow birefringence. As observed by others, the limiting elasticity value as determined by the Weissenberg number (We) for convergence of the algorithm decreased with increased refinement of the mesh. However, good agreement is still found between predicted values of stress using the coarse mesh and those measured by means of flow birefringence. This work suggests that there may be an optimum mesh for a given flow and constitutive equation which will still give physically realistic results. The Wei...

8 citations

Journal ArticleDOI
TL;DR: In this paper, a displacement beam finite element is derived based on a nonlinear kinematic model for a pretwisted composite beam, and the reduced/selective integration technique is employed to investigate shear and membrane locking for each type of element.

8 citations

Journal ArticleDOI
TL;DR: In this paper, two nonlinear elasticity theories that account for geometric nonlinearity and microstructure-dependent size effects are revisited to establish the connection betweenthe two theories.
Abstract: In this paper two different nonlinear elasticity theories that account for (a) geometric nonlinearityand (b) microstructure-dependent size effects are revisited to establish the connection betweenthe two theories. The first theory is based on modified couple stress theory of Yang et al. [1]and the second one is based on Srinivasa–Reddy gradient elasticity theory [2]. The modified couplestress theory includes a material length scale parameter that can capture the size effect in a material.The gradient elasticity theory was developed for finitely deforming hyperelastic cosserat continuum,and it is a generalization of small deformation couple stress theories. The Srinivasa–Reddy theorycontains, as a special case, the first one. These two theories are used to derive the governing equationsof beams and plates. In addition, a discrete peridynamics idea as an alternative to the conventionalperidynamics is also presented.

8 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations