scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review paper containing the governing equations and analytical solutions of the classical and shear deformation theories of functionally graded straight beams is presented, where the authors show the influence of the material variation, boundary conditions, and loads.
Abstract: This is a review paper containing the governing equations and analytical solutions of the classical and shear deformation theories of functionally graded straight beams. The classical, first-order, and third-order shear deformation theories account for through-thickness variation of two-constituent functionally graded material, modified couple stress (i.e., strain gradient), and the von Karman nonlinearity. Analytical solutions for bending of the linear theories, some of which are not readily available in the literature, are included to show the influence of the material variation, boundary conditions, and loads.

4 citations

Proceedings ArticleDOI
19 Apr 2004
TL;DR: In this paper, a hierarchical finite element modeling methodology for the simulation of progressive damage in fiber-reinforced composite laminates is presented. Butler et al. describe the ongoing development of a finite element modelling methodology, which allows the mathematical model type and level of discretization to adaptively evolve in response to the increase in behavioral complexity that results from localized or wide-spread damage progression.
Abstract: ‡This paper describes the ongoing development of a hierarchical finite element modeling methodology for the simulation of progressive damage in fiber-reinforced composite laminates. Damage is modeled within the context of continuum damage mechanics and is applied to the homogenized material description of each material ply. The damage evolution equations are solved at the Gaussian integration points within each material ply, thus explicitly accounting for damage variation through the thickness of each material ply. The hierarchical formulation is ultimately intended to permit the mathematical model type and level of discretization to adaptively evolve in response to the increase in behavioral complexity that results from localized or wide-spread damage progression.

4 citations

Journal ArticleDOI
TL;DR: In this article, the third-order plate theory of Reddy is used to study vibration suppression characteristics of laminated composite plates with smart material layers embedded in them, and the analytical solution for simply supported boundary conditions is based on the Navier solution procedure.
Abstract: Analytical solutions and finite element results of laminated composite plates with smart material layers embedded in them are presented in this study. The third-order plate theory of Reddy is used to study vibration suppression characteristics. The analytical solution for simply supported boundary conditions is based on the Navier solution procedure. The velocity feedback control is used. Parametric effects of the position of the smart material layers, material properties, and control parameters on the suppression time are investigated. It has been found that (a) the minimum vibration suppression time is achieved by placing the smart material layers farthest from the neutral axis, (b) using thinner smart material layers have better vibration attenuation characteristics, and, (c) the vibration suppression time is larger for a lower value of the feedback control coefficient.

4 citations

Journal ArticleDOI
TL;DR: In this article, the details of mathematical and computational aspects of the Galerkin/least-squares and weak form least squares finite element process are investigated. But the results of the analysis are limited.
Abstract: This paper presents an investigation of the details of mathematical and computational aspects of the Galerkin/least-squares and the Galerkin/weak form least-squares finite element process within the mathematical and computational framework [1, 2, 3] based on h, p, k as independent computational parameters and requiring that the integral forms be variationally consistent (VC). Higher-order global differentiability of order (k−1) defined by the order k of the approximation space is essential for incorporating correct physics of the processes in the computations and that k is an independent parameter in addition to h and p in all finite element computations. In this paper the attributes of the Galerkin method, the Galerkin method with weak form, and least-squares processes in h, p, k framework with variationally consistent (VC) or variationally inconsistent (VIC) integral forms are utilized to investigate the mathematical features of the Galerkin/least-squares processes (GAL/LSP) and Galerkin/weak form least...

4 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations