scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Journal ArticleDOI
J. N. Reddy1
TL;DR: A review and generalization of the displacement-based two-dimensional plate theories is presented in this paper, where the classical and shear deformation single-layer theories up to the third-order are presented in a single theory through tracers.
Abstract: A review and generalization of the displacement-based two-dimensional plate theories is presented. The classical and shear deformation single-layer theories up to the third-order are presented in a single theory through tracers. The layer-wise laminate theory developed by the author is reviewed. Numerical results are presented to illustrate the accuracy of the layer-wise theory by comparison with the analytical solution of the 3-D elasticity theory.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed analytical solutions for displacements, natural frequencies and buckling loads of cross-ply circular cylindrical shells under various boundary conditions using the classical, first-order and third-order shell theories and the state-space technique.

128 citations

Journal ArticleDOI
TL;DR: In this paper, a postbuckling analysis of functionally graded ceramic-metal plates under edge compression and temperature field conditions is presented using the element-free kp-Ritz method.

127 citations

Journal ArticleDOI
TL;DR: In this paper, the pseudodynamic thermoelastic response of functionally graded ceramic-metal cylinders is studied and a finite-element formulation of the 1D, axisymmetric heat transfer equation and the thermo-elastic radial boundary value problem is presented.
Abstract: The pseudodynamic thermoelastic response of functionally graded ceramic-metal cylinders is studied. This paper presents the finite-element formulation of the 1D, axisymmetric heat transfer equation and the thermoelastic radial boundary value problem. A two-step solution of the governing equations of thermoelasticity is presented. Thermoelastic coupling is considered by taking into effect the temperature dependence of the constitutive equations. Nonlinearity due to the temperature dependence of the material properties of the constituent ceramic and metal is considered. A parametric study with respect to varying volume fraction of the metal is conducted. Temperature and radial/hoop stress distributions arising due to rapid heating of the inner surface of the functionally graded cylinder are presented.

127 citations

MonographDOI
01 Jan 2013
TL;DR: In this paper, the authors present a model of linearized elasticity and linearized viscoelasticity for heat transfer and stress measures, and show that linearised elasticity is equivalent to heat transfer.
Abstract: 1. Introduction 2. Vectors and tensors 3. Kinematics of continua 4. Stress measures 5. Conservation and balance laws 6. Constitutive equations 7. Linearized elasticity 8. Fluid mechanics and heat transfer 9. Linearized viscoelasticity.

126 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations