scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a finite-element analysis of the large deflection bending of annular plates with variable thickness is presented, where the more general Reissner plate equations as well as von Karman plate equations are used in the formulation.

36 citations

Journal ArticleDOI
TL;DR: In this article, a micropolar Timoshenko beam formulation is developed and used to model web-core sandwich beams, where the split of the shear forces into symmetric and antisymmetric parts plays a pivotal role.

36 citations

Journal ArticleDOI
TL;DR: The effects of various configurations of atomic vacancy defects, on axial buckling of single-walled carbon nanotubes (SWCNTs), in different thermal environments, is investigated using molecular dynamics simulations (MDS), based on a COMPASS force field.
Abstract: Owing to their remarkable mechanical properties, carbon nanotubes have been employed in many diverse areas of applications. However, similar to any of the many man-made materials used today, carbon nanotubes (CNTs) are also susceptible to various kinds of defects. Understanding the effect of defects on the mechanical properties and behavior of CNTs is essential in the design of nanotube-based devices and composites. It has been found in various past studies that these defects can considerably affect the tensile strength and fracture of CNTs. Comprehensive studies on the effect of defects on the buckling and vibration of nanotubes is however lacking in the literature. In this paper, the effects of various configurations of atomic vacancy defects, on axial buckling of single-walled carbon nanotubes (SWCNTs), in different thermal environments, is investigated using molecular dynamics simulations (MDS), based on a COMPASS force field. Our findings revealed that even a single missing atom can cause a significant reduction in the critical buckling strain and load of SWCNTs. In general, increasing the number of missing atoms, asymmetry of vacancy configurations and asymmetric distribution of vacancy clusters seemed to lead to higher deterioration in buckling properties. Further, SWCNTs with a single vacancy cluster, compared to SWCNTs with two or more vacancy clusters having the same number of missing atoms, appeared to cause higher deterioration of buckling properties. However, exceptions from the above mentioned trends could be expected due to chemical instabilities of defects. Temperature appeared to have less effect on defective CNTs compared to pristine CNTs.

36 citations

Journal ArticleDOI
TL;DR: It is shown that order of the scalar product space k (in space and time) is an intrinsically important independent parameter in all finite element computations for IVP in addition to the discretization length h and the degree p of the local approximations, thus in all limits all quantities are dependent on h, p and k.
Abstract: This paper presents a mathematical and computational framework for initial value problems (IVP) in which the numerical approximations can be of higher order global differentiability in space and time and the resulting computational processes are unconditionally stable. This is accomplished using Hk, p scalar product spaces containing basis functions of degree p = (p1,p2), p1 and p2 being the degrees of local approximation in space and time and order k = (k1, k2), k1 and k2 being orders of the scalar product space in space and time and ensuring that the integral forms are space-time integral forms that are space-time variationally consistent (STVC). It is shown that order of the scalar product space k (in space and time) is an intrinsically important independent parameter in all finite element computations for IVP in addition to the discretization length h and the degree p of the local approximations, thus in all finite element computations all quantities are dependent on h, p and k. Hence, we have k-versi...

35 citations

Journal ArticleDOI
TL;DR: In this paper, the Navier-Stokes equations and the energy equation governing laminar incompressible flow are solved using a penalty finite-element model for the case of flow across an in-line bundle of cylinders.
Abstract: The two-dimensional steady state Navier-Stokes equations and the energy equation governing laminar incompressible flow are solved using a penalty finite-element model for the case of flow across an in-line bundle of cylinders. Two cases of in-line cylinder bundles, one five rows deep and the other an infinite bundle, are considered with pitch-diameter ratios of 1.25, 1.5 and 1.8 Reynolds numbers studied range from 100 to 600 and Prandtl number is taken as 0.7. Velocity field vectors, stream lines, vorticity, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distribution around the cylinder walls and drag coefficients are presented. The results obtained agree well with available experimental and numerical data.

35 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations