scispace - formally typeset
Search or ask a question
Author

J. N. Reddy

Bio: J. N. Reddy is an academic researcher from Texas A&M University. The author has contributed to research in topics: Finite element method & Plate theory. The author has an hindex of 106, co-authored 926 publications receiving 66940 citations. Previous affiliations of J. N. Reddy include Instituto Superior Técnico & National University of Singapore.


Papers
More filters
Book ChapterDOI
25 Mar 2004

17 citations

Book ChapterDOI
01 Jan 1987
TL;DR: The development of consistent refined theories of anisotropic plates (and shells) which discard the Kirchhoff hypothesis has attracted increasing attention during recent years as discussed by the authors, outside the purely heuristic interest the advent of the new exotic materials such as the advanced composites, has generated the greatest stimulus for such interest.
Abstract: The development of consistent refined theories of anisotropic plates (and shells) which discard the Kirchhoff hypothesis has attracted increasing attention during recent years. Outside the purely heuristic interest the advent of the new exotic materials, such as the advanced composites, has generated the greatest stimulus for such interest.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the coupling mechanisms between the diffusion process and the viscoelastic response of an adhesive are explained and a numerical scheme for fully-coupled solutions is proposed and implemented in a two-dimensional finite element code.
Abstract: The coupling mechanisms between the diffusion process and the viscoelastic response of an adhesive are explained. A numerical scheme for fully-coupled solutions is proposed and implemented in a two-dimensional finite element code. A number of numerical simulations are presented in order to illustrate the importance of the following features: (1) the bulk viscoelastic behavior, (2) penetrant size, (3) physical aging, (4) the strain dependence of the diffusion coefficient, (5) the concentration dependence of the diffusion coefficient and (6) differential, swelling. The effect of moisture intrusion on the stress (strain) distribution across a butt joint is also presented.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the displacement-based finite element models for hyperelastic materials and showed that the magnitude of the nodal forces depends upon the extensional strains of neighboring edges.

17 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the Cauchy moment tensor is not symmetric and the antisymmetric components of the Couchy stress tensor are not balanced by the gradient of the angular momenta balance law.
Abstract: In the non-classical continuum theories for solid continua the presence of internal rotations and their gradients arising due to Jacobian of deformation and/or consideration of Cosserat rotations as additional unknown degrees of freedom at a material point necessitate existence of moment tensor. For small deformation, small strains theories, in Lagrangian description the Cauchy moment tensor and the rates of rotation gradients are rate of work conjugate pair in addition to the rate of work conjugate Cauchy stress tensor and the strain rate tensor. It is well established that in such non-classical theories the Cauchy stress tensor is non-symmetric and the antisymmetric components of the Cauchy stress tensor are balanced by gradients of the Cauchy moment tensor, the balance of angular momenta balance law. In the non-classical continuum theories incorporating internal rotations and conjugate moment tensor that are absent in the classical continuum theories, the fundamental question is “are the conservation and balance laws used in classical continuum mechanics sufficient to ensure dynamic equilibrium of the deforming volume of matter”. At this stage the Cauchy moment tensor remains non-symmetric if we only consider standard balance laws that are used in classical continuum theories. Thus, requiring constitutive theories for the symmetric as well as anti-symmetric Cauchy moment tensors. The work presented in this paper shows that when the thermodynamically consistent constitutive theories are used for symmetric as well as antisymmetric Cauchy moment tensor non physical and spurious solutions result even in simple model problems. This suggests that perhaps the additional conjugate tensors resulting due to presence of internal rotations, namely the Cauchy moment tensor and the antisymmetric part of the Cauchy stress stress tensor must obey some additional law or restriction so that the spurious behavior is precluded. This paper demonstrates that in the non-classical theory with internal rotations considered here the law of balance of moment of moments and the consideration of the equilibrium of moment of moments are in fact identical. When this balance law is considered the Cauchy moment tensor becomes symmetric, hence eliminating the constitutive theory for the antisymmetric Cauchy moment tensor and thereby eliminating spurious and non physical solutions. The necessity of this balance law is established theoretically and is also demonstrated through model problems using thermoelastic solids with small strain small deformation as an example. The findings reported in this paper hold for thermoviscoelastic solids with and without memory as well as when deformation and strains are small. Extensions of the concepts presented here for finite deformation and finite strain will be presented in a follow up paper.

17 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a new finite element formulation for convection dominated flows is developed, based on the streamline upwind concept, which provides an accurate multidimensional generalization of optimal one-dimensional upwind schemes.

5,157 citations

Book
01 Jan 1989
TL;DR: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control, providing background material on terminology and linear transformations and examples illustrating all aspects of the theory and problems.
Abstract: From the Publisher: This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. Provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. Includes many worked examples, examples illustrating all aspects of the theory, and problems.

3,736 citations

Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations