scispace - formally typeset
Search or ask a question
Author

J. P. Lescure

Bio: J. P. Lescure is an academic researcher from Institut Français. The author has contributed to research in topics: Woody plant & Forest inventory. The author has an hindex of 8, co-authored 15 publications receiving 2747 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics, is provided.
Abstract: Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contri- bution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regres- sion models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ‡ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional rela- tionships between aboveground biomass and the prod- uct of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regres- sion model involving wood density and stem diameter only. Our models were tested for secondary and old- growth forests, for dry, moist and wet forests, for low- land and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprece- dented dataset, these models should improve the quality

2,786 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a method to observe and map morphological and functional characteristics of soil, including drainage and surface hydromorphy, in eleven plots including 16.8 hectares.
Abstract: We describe a new method to observe and map morphological and functional characteristics of soil. Drainage and surface hydromorphy were mapped in eleven plots including 16.8 hectares. In the same plots, all trees over 20 cm DBH were inventoried. Structural data of the vegetation are correlated to soils characteristics as well as the frequencies and densities of 32 taxa.

94 citations

Journal ArticleDOI
TL;DR: Role de divers groupes de plantes (nomades, dryades) dans la mosaique forestiere dans les phases successives de cette mosaique, divers processus dont les plus importants sont la dissemination and the dynamique de the croissance.
Abstract: Role de divers groupes de plantes (nomades, dryades) dans la mosaique forestiere. Relations entre la mosaique forestiere, les phases successives de cette mosaique, divers processus dont les plus importants sont la dissemination et la dynamique de la croissance et qui s'expriment naturellement lorsqu'apparaissent des chablis. Illustrations photographiques, diagrammes, schemas

27 citations

Journal ArticleDOI
TL;DR: The distribution of the phytomass within large vegetation groups shows the predominance of Caesalpiniaceae, and the annual primary yield-capacity is 12.3 t/ha/yr, of the same order as annual necromass.
Abstract: (...)The distribution of the phytomass within large vegetation groups shows the predominance of Caesalpiniaceae. Mass yield-capacity is connected to various factors : diameter category, edaphic condition, rainfall cycle, state of evolution of the primary or secondary stand ; the production of litter seems more constant and is estimated at 7.8 t/ha/yr. The annual primary yield-capacity is 12.3 t/ha/yr, of the same order as annual necromass (11.7 t/ha/yr). The similarity between these data and those found by other authors is stressed

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties.
Abstract: Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem-level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.

2,744 citations

Journal ArticleDOI
TL;DR: It is suggested that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined.
Abstract: Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.

2,408 citations

Journal ArticleDOI
TL;DR: This work analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types, and found a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height.
Abstract: Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

1,750 citations

Journal ArticleDOI
TL;DR: In this article, a range of methods available to estimate national-level forest carbon stocks in developing countries are reviewed, including ground-based and remote-sensing measurements of forest attributes using allometric relationships.
Abstract: Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations' carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of methods available to estimate national-level forest carbon stocks in developing countries. While there are no practical methods to directly measure all forest carbon stocks across a country, both ground-based and remote-sensing measurements of forest attributes can be converted into estimates of national carbon stocks using allometric relationships. Here we synthesize, map and update prominent forest biomass carbon databases to create the first complete set of national-level forest carbon stock estimates. These forest carbon estimates expand on the default values recommended by the Intergovernmental Panel on Climate Change's National Greenhouse Gas Inventory Guidelines and provide a range of globally consistent estimates.

1,499 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided the most detailed estimate of the carbon density of vegetation and associated carbon dioxide emissions from deforestation for ecosystems across the tropics across the world, including tropical rainforests.
Abstract: Deforestation contributes 6–17% of anthropogenic carbon dioxide emissions. However, much uncertainty in the calculation of deforestation emissions stems from the inadequacy of forest carbon-density and deforestation data. Now an analysis provides the most-detailed estimate so far of the carbon density of vegetation and the associated carbon dioxide emissions from deforestation for ecosystems across the tropics.

1,428 citations