scispace - formally typeset
Search or ask a question
Author

J. P. Wang

Bio: J. P. Wang is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Free-space optical communication & Optical switch. The author has an hindex of 9, co-authored 25 publications receiving 583 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components, a 4-5 times improvement over the performance of the best electronic ADCs which exist today.
Abstract: Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

418 citations

Proceedings ArticleDOI
16 May 2010
TL;DR: A scalable high-sensitivity approach for achieving multi-rate DPSK using a single transmitter and fixed-interferometer-receiver design is proposed and demonstrated.
Abstract: We propose and demonstrate a scalable high-sensitivity approach for achieving multi-rate DPSK using a single transmitter and fixed-interferometer-receiver design. Near-theoretical real-time performance is demonstrated over static and fading channels at rates from 2.4Mbps to 2.5Gbps.

39 citations

Proceedings ArticleDOI
TL;DR: A robust, near-quantum-limited multi-rate DPSK transceiver, co-located transmitter and receiver subsystems that can operate efficiently over the highly-variable free-space channel are discussed.
Abstract: We describe a flexible high-sensitivity laser communication transceiver design that can significantly benefit performance and cost of NASA's satellite-based Laser Communications Relay Demonstration Optical communications using differential phase shift keying, widely deployed for use in long-haul fiber-optic networks, is well known for its superior sensitivity and link performance over on-off keying, while maintaining a relatively straightforward design However, unlike fiber-optic links, free-space applications often require operation over a wide dynamic range of power due to variations in link distance and channel conditions, which can include rapid kHz-class fading when operating through the turbulent atmosphere Here we discuss the implementation of a robust, near-quantum-limited multi-rate DPSK transceiver, co-located transmitter and receiver subsystems that can operate efficiently over the highly-variable free-space channel Key performance features will be presented on the master oscillator power amplifier (MOPA) based TX, including a wavelength-stabilized master laser, high-extinction-ratio burst-mode modulator, and 05 W single polarization power amplifier, as well as low-noise optically preamplified DSPK receiver and built-in test capabilities

27 citations

Journal ArticleDOI
TL;DR: This work shows simultaneous forwarding of two optical packets through a 2times2 spatial switch at 40 Gb/s using only two ultrafast nonlinear interferometers, demonstrating a scalable all-optical header processing architecture applicable for general network topologies.
Abstract: We show simultaneous forwarding of two optical packets through a 2times2 spatial switch at 40 Gb/s using only two ultrafast nonlinear interferometers. This demonstrates a scalable all-optical header processing architecture applicable for general network topologies and can lead to reduced size, weight, and power requirements as compared with electronic solutions. Clear open eye diagrams were observed and a packet error rate of 10-6, comparable with current electronic router error rates, was measured for the entire system

26 citations

Proceedings ArticleDOI
TL;DR: The design and testing of an efficient and robust multi-rate DPSK modem is discussed, including aspects of the electrical, mechanical, thermal, and optical design.
Abstract: The multi-rate DPSK format, which enables efficient free-space laser communications over a wide range of data rates, is finding applications in NASA’s Laser Communications Relay Demonstration We discuss the design and testing of an efficient and robust multi-rate DPSK modem, including aspects of the electrical, mechanical, thermal, and optical design The modem includes an optically preamplified receiver, an 05-W average power transmitter, a LEON3 rad-hard microcontroller that provides the command and telemetry interface and supervisory control, and a Xilinx Virtex-5 radhard reprogrammable FPGA that both supports the high-speed data flow to and from the modem and controls the modem’s analog and digital subsystems For additional flexibility, the transmitter and receiver can be configured to support operation with multi-rate PPM waveforms

26 citations


Cited by
More filters
Journal ArticleDOI
20 Mar 2014-Nature
TL;DR: The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution.
Abstract: The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

793 citations

Journal ArticleDOI
18 Apr 2018-Nature
TL;DR: A way of integrating photonics with silicon nanoelectronics is described, using polycrystalline silicon on glass islands alongside transistors on bulk silicon complementary metal–oxide–semiconductor chips to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing.
Abstract: Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions1,2. This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing3,4. By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip'1,6-8. As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge10,11, this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.

630 citations

Journal ArticleDOI
TL;DR: This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics and key integrated MWP technologies are reviewed and the prospective of the field is discussed.
Abstract: Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

592 citations

01 Jul 2013
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Abstract: Nearly a century after Einstein first predicted the existence of gravitational waves, a global network of Earth-based gravitational wave observatories1, 2, 3, 4 is seeking to directly detect this faint radiation using precision laser interferometry. Photon shot noise, due to the quantum nature of light, imposes a fundamental limit on the attometre-level sensitivity of the kilometre-scale Michelson interferometers deployed for this task. Here, we inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz, critically important for several astrophysical sources, with no deterioration of performance observed at any frequency. With the injection of squeezed states, this LIGO detector demonstrated the best broadband sensitivity to gravitational waves ever achieved, with important implications for observing the gravitational-wave Universe with unprecedented sensitivity.

589 citations

Journal ArticleDOI
TL;DR: In this article, advanced optical burst switching (OBS) and optical packet switching (OPS) technologies and their roles in the future photonic Internet are discussed and discussed in detail.
Abstract: This paper reviews advanced optical burst switching (OBS) and optical packet switching (OPS) technologies and discusses their roles in the future photonic Internet. Discussions include optoelectronic and optical systems technologies as well as systems integration into viable network elements (OBS and OPS routers). Optical label switching (OLS) offers a unified multiple-service platform with effective and agile utilization of the available optical bandwidth in support of voice, data, and multimedia services on the Internet Protocol. In particular, OLS routers with wavelength routing switching fabrics and parallel optical labeling allow forwarding of asynchronously arriving variable-length packets, bursts, and circuits. By exploiting contention resolution in wavelength, time, and space domains, the OLS routers can achieve high throughput without resorting to a store-and-forward method associated with large buffer requirements. Testbed demonstrations employing OLS edge routers show high-performance networking in support of multimedia and data communications applications over the photonic Internet with optical packets and bursts switched directly at the optical layer

509 citations