scispace - formally typeset
Search or ask a question
Author

J. Postel

Bio: J. Postel is an academic researcher. The author has contributed to research in topics: Internet Protocol. The author has an hindex of 1, co-authored 1 publications receiving 1955 citations.

Papers
More filters
01 Sep 1981
TL;DR: Along with TCP, IP represents the heart of the Internet protocols and has two primary responsibilities: providing connectionless, best-effort delivery of datagrams through an internetwork; and providing fragmentation and reassembly of data links to support data links with different maximum transmission unit (MTU) sizes.
Abstract: IP is a network layer (Layer 3) protocol that contains addressing information and some control information that enables packets to be routed. IP is documented in RFC 791 and is the primary network layer protocol in the Internet protocol suite. Along with TCP, IP represents the heart of the Internet protocols. IP has two primary responsibilities: providing connectionless, best-effort delivery of datagrams through an internetwork; and providing fragmentation and reassembly of datagrams to support data links with different maximum transmission unit (MTU) sizes.

1,967 citations


Cited by
More filters
01 Jul 2003
TL;DR: RTP provides end-to-end network transport functions suitable for applications transmitting real-time data over multicast or unicast network services and is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks.
Abstract: This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of-service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers.

7,183 citations

Journal ArticleDOI
TL;DR: This paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Abstract: The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.

4,335 citations

01 Aug 1995
TL;DR: This document describes an updated version of the "Security Architecture for IP", which is designed to provide security services for traffic at the IP layer, and obsoletes RFC 2401 (November 1998).
Abstract: This document describes an updated version of the "Security Architecture for IP", which is designed to provide security services for traffic at the IP layer. This document obsoletes RFC 2401 (November 1998). [STANDARDS-TRACK]

3,455 citations

Journal ArticleDOI
TL;DR: On conventional PC hardware, the Click IP router achieves a maximum loss-free forwarding rate of 333,000 64-byte packets per second, demonstrating that Click's modular and flexible architecture is compatible with good performance.
Abstract: Clicks is a new software architecture for building flexible and configurable routers. A Click router is assembled from packet processing modules called elements. Individual elements implement simple router functions like packet classification, queuing, scheduling, and interfacing with network devices. A router configurable is a directed graph with elements at the vertices; packets flow along the edges of the graph. Several features make individual elements more powerful and complex configurations easier to write, including pull connections, which model packet flow drivn by transmitting hardware devices, and flow-based router context, which helps an element locate other interesting elements. Click configurations are modular and easy to extend. A standards-compliant Click IP router has 16 elements on its forwarding path; some of its elements are also useful in Ethernet switches and IP tunnelling configurations. Extending the IP router to support dropping policies, fairness among flows, or Differentiated Services simply requires adding a couple of element at the right place. On conventional PC hardware, the Click IP router achieves a maximum loss-free forwarding rate of 333,000 64-byte packets per second, demonstrating that Click's modular and flexible architecture is compatible with good performance.

2,595 citations

Book
01 Mar 2001
TL;DR: The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes, and a summary of some of the simulation and testbed implementation results for the protocol is provided.
Abstract: The Dynamic Source Routing protocol (DSR) is a simple and efficient routing protocol designed specifically for use in multi-hop wireless ad hoc networks of mobile nodes. DSR allows the network to be completely self-organizing and self-configuring, without the need for any existing network infrastructure or administration. The protocol is composed of the two mechanisms of Route Discovery and Route Maintenance, which work together to allow nodes to discover and maintain source routes to arbitrary destinations in the ad hoc network. The use of source routing allows packet routing to be trivially loop-free, avoids the need for up-to-date routing information in the intermediate nodes through which packets are forwarded, and allows nodes forwarding or overhearing packets to cache the routing information in them for their own future use. All aspects of the protocol operate entirely on-demand, allowing the routing packet overhead of DSR to scale automatically to only that needed to react to changes in the routes currently in use. We have evaluated the operation of DSR through detailed simulation on a variety of movement and communication patterns, and through implementation and significant experimentation in a physical outdoor ad hoc networking testbed we have constructed in Pittsburgh, and have demonstrated the excellent performance of the protocol. In this chapter, we describe the design of DSR and provide a summary of some of our simulation and testbed implementation results for the protocol.

2,579 citations