scispace - formally typeset
Search or ask a question
Author

J. R. Davis

Bio: J. R. Davis is an academic researcher from Westinghouse Electric. The author has contributed to research in topics: Silicon & Solar cell. The author has an hindex of 10, co-authored 16 publications receiving 1859 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the resonant gate transistor (RGT) is described as an electrostatically excited tuning fork employing field effect transistor readout, which can be batch-fabricated in a manner consistent with silicon technology.
Abstract: A device is described which permits high- Q frequency selection to be incorporated into silicon integrated circuits. It is essentially an electrostatically excited tuning fork employing field-effect transistor "readout." The device, which is called the resonant gate transistor (RGT), can be batch-fabricated in a manner consistent with silicon technology. Experimental RGT's with gold vibrating beams operating in the frequency range 1 kHz 0 Q 's as high as 500 and overall input-output voltage gain approaching + 10 dB have been constructed. The mechanical and electrical operation of the RGT is analyzed. Expressions are derived for both the beam and the detector characteristic voltage, the device center frequency, as well as the device gain and gain-stability product. A batch-fabrication procedure for the RGT is demonstrated and theory and experiment corroborated. Both single- and multiple-pole pair band pass filters are fabricated and discussed. Temperature coefficients of frequency as low as 90- 150 ppm/°C for the finished batch-fabricated device were demonstrated.

1,143 citations

Journal ArticleDOI
TL;DR: In this article, the effects of various metallic impurities, both singly and in combinations, on the performance of silicon solar cells have been studied and an analytic model was developed which predicts cell performance as a function of the secondary impurity concentrations.
Abstract: The effects of various metallic impurities, both singly and in combinations, on the performance of silicon solar cells have been studied. Czochralski crystals were grown with controlled additions of secondary impurities. The primary dopants were boron and phosphorus while the secondaires were: A1, B, C, Ca, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, P, Pd, Ta, Ti, V, W, Zn, and Zr. Impurity concentrations ranged from 1010to 1017/cm3. Solar cells were made using a conventional diffusion process and were characterized by computer reduction of I-V data. The collected data indicated that impurity-induced performance loss was primarily due to reduction of the base diffusion length. Based on this observation, an analytic model was developed which predicts cell performance as a function of the secondary impurity concentrations. The calculated performance parameters are in good agreement with measured values except for Cu, Ni, and Fe, which at higher concentrations, degrade the cell substantially by means of junction mechanisms. This behavior can be distinguished from base diffusion length effects by careful analysis of the I-V data. The effects of impurities in n-base and p-base devices differ in degree but submit to the same modeling analysis. A comparison of calculated and measured performance for multiple impurities indicates a limited interaction between impurities, e.g., copper appears to improve titanium-doped cells.

404 citations

Journal ArticleDOI
TL;DR: The effect of Ti, Cu and Fe on silicon solar cells has been investigated in this article, where the authors found that the active center density of both Ti and Fe is only a very small fraction of the total impurity content in the starting silicon wafer.
Abstract: The effect of Ti, Cu and Fe on silicon solar cells has been investigated. Ti severely degrades cell performance above a concentration of 10 11 cm −3 . The presence of 2 × 10 14 cm −3 Ti results in a 63% loss in cell performance and more than an order of magnitude reduction in carrier lifetime. Ti gives rise to two deep levels in Si at Ev + 0.30 eV and Ec − 0.27 eV. Copper, at concentrations below 10 16 cm −3 , has negligible effect on cell performance and carrier lifetime. Above 10 16 cm −3 copper occasionally produces a 10–15% loss in cell performance with a noticeable increase in junction excess current. No recombination centers were found due to Cu, instead considerable precipitation in the starting material was observed. Fe begins to hurt the cell performance above a concentration of 2 × 10 14 cm −3 . Iron at 1.7 × 10 15 cm −3 results in 46% loss in cell efficiency and about an order of magnitude reduction in lifetime. Fe induces a deep level in silicon at Ev + 0.4 eV. The active center density, for both Ti and Fe, is only a very small fraction of the total impurity content in the starting silicon wafer.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of determining the maximum tolerable impurity concentration in solar grade silicon was analyzed using data on relative solar cell efficiency as a function of metallic impurity concentrations and the effective segregation coefficients for Czochralski growth.

61 citations

Journal ArticleDOI
TL;DR: In this article, the largest impurity-induced deep-level concentration, defined as the electrically active impurity concentration, is found to be a fraction of the metallurgical impurity content of the crystals.
Abstract: Deep levels due to various impurities incorporated into Czochralski silicon ingots during crystal growth have been delineated. The largest impurity-induced deep-level concentration, defined as the electrically active impurity concentration, is found to be a fraction of the metallurgical impurity content of the crystals. This fraction for a specific impurity depends on the thermal history of the sample and the ability of the impurity to diffuse. POCl3 gettering of Ti and V produces a decreasing electrically active impurity concentration toward the surface of a silicon wafer, while there is no observable effect of this heat treatment on the Mo concentration. In the case of Cr, which diffuses much more rapidly than Mo, Ti, or V in silicon, a very significant reduction in the electrically active concentration is observed after heat treatment. Similarly, in metal-doped polysilicon wafers the electrically active Mo concentration appears unaffected by grain boundaries, but the electrically active Cr concentration at or near some grain boundaries is reduced by more than an order of magnitude compared to that at grain centers.

58 citations


Cited by
More filters
Journal ArticleDOI
01 May 1982
TL;DR: This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,723 citations

Journal Article
TL;DR: In this article, the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures are discussed.
Abstract: Single-crystal silicon is being increasingly employed in a variety of new commercial products not because of its well-established electronic properties, but rather because of its excellent mechanical properties. In addition, recent trends in the engineering literature indicate a growing interest in the use of silicon as a mechanical material with the ultimate goal of developing a broad range of inexpensive, batch-fabricated, high-performance sensors and transducers which are easily interfaced with the rapidly proliferating microprocessor. This review describes the advantages of employing silicon as a mechanical material, the relevant mechanical characteristics of silicon, and the processing techniques which are specific to micromechanical structures. Finally, the potentials of this new technology are illustrated by numerous detailed examples from the literature. It is clear that silicon will continue to be aggressively exploited in a wide variety of mechanical applications complementary to its traditional role as an electronic material. Furthermore, these multidisciplinary uses of silicon will significantly alter the way we think about all types of miniature mechanical devices and components.

2,707 citations

Journal ArticleDOI
25 Oct 2010
TL;DR: This review introduces and summarizes progress in the development of the tunnel field- effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges.
Abstract: Steep subthreshold swing transistors based on interband tunneling are examined toward extending the performance of electronics systems. In particular, this review introduces and summarizes progress in the development of the tunnel field-effect transistors (TFETs) including its origin, current experimental and theoretical performance relative to the metal-oxide-semiconductor field-effect transistor (MOSFET), basic current-transport theory, design tradeoffs, and fundamental challenges. The promise of the TFET is in its ability to provide higher drive current than the MOSFET as supply voltages approach 0.1 V.

1,389 citations

Journal ArticleDOI
TL;DR: The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators that can be integrated with signal conditioning and processing circuitry to form micro-electromechanical-systems (MEMS) that can perform real-time distributed control.
Abstract: The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electromechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research.

1,287 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss sensors with transducers in a form of cantilevers, which are especially attractive as transducers for chemical and biological sensors, and provide a brief analysis of historical predecessors of the modern cantilever sensors.
Abstract: Since the late 1980s there have been spectacular developments in micromechanical or microelectro-mechanical (MEMS) systems which have enabled the exploration of transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result an innovative family of chemical and biological sensors has emerged. In this article, we discuss sensors with transducers in a form of cantilevers. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. The review deals with four important aspects of cantilever transducers: (i) operation principles and models; (ii) microfabrication; (iii) figures of merit; and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors.

1,165 citations