scispace - formally typeset
Search or ask a question
Author

J. Redinger

Bio: J. Redinger is an academic researcher from Vienna University of Technology. The author has contributed to research in topics: Density functional theory & Scanning tunneling microscope. The author has an hindex of 23, co-authored 82 publications receiving 1908 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the adsorption of graphene on Ni(111) has been investigated on the basis of the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation (RPA).
Abstract: The adsorption of graphene on Ni(111) has been investigated on the basis of the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation (RPA). Although we find a significant hybridization between the graphene $\ensuremath{\pi}$ orbitals and Ni ${d}_{{z}^{2}}$ states at a binding distance of 2.17 \AA{}, the adsorption energy is still in the range of a typical physisorption (67 meV per carbon). An important contribution to the energy is related to a decrease in the exchange energy resulting from the adsorption-induced lower symmetry in the graphene layer. The energetics can be well reproduced using the computationally significantly cheaper van der Waals density functional theory with an appropriately chosen exchange-correlation functional.

240 citations

Journal ArticleDOI
TL;DR: In this article, the formation of ferromagentic order requires large cell volumes, high ionicity and a slight hybridization of anion $p$ and cation $d$ states around the Fermi energy.
Abstract: On the basis of ab initio calculations employing density functional theory (DFT) we investigate half metallic ferromagnetism in zinc-blende and wurtzite compounds composed of group I/II metals as cations and group V elements as anions. We find that the formation of ferromagentic order requires large cell volumes, high ionicity and a slight hybridization of anion $p$ and cation $d$ states around the Fermi energy. Our calculations show that a ferromagnetic alignment of the spins is energetically always more stable than simple AF arrangements, which makes these materials possible candidates for spin injection in spintronic devices. To clarify the conditions for the flat $p$-band carrying the magnetism, we present results of a tight binding analysis.

138 citations

Journal ArticleDOI
TL;DR: Comparison of images with chemical contrast of Pt and Co and images showing the CO molecules indicates that CO resides exclusively on top of Pt sites and never on Co.
Abstract: CO adsorption on a PtCo(111) surface was studied by scanning tunneling microscopy. Comparison of images with chemical contrast of Pt and Co and images showing the CO molecules indicates that CO resides exclusively on top of Pt sites and never on Co. CO bonding is highly sensitive to the chemical environment. The probability to find CO on a Pt atom increases drastically with the number of its Co nearest neighbors. Ab initio calculations show that this ligand effect is due to different positions of the center of the Pt d band.

128 citations

Journal ArticleDOI
TL;DR: Technical aspects and modifications related to the choice of basis functions (energy parameters, core-valence orthogonality, extended local orbitals) that affect the applicability and accuracy of the FLAPW method are described, as well as an approach for obtaining k-independent matrix elements.
Abstract: Modern material design involves a close collaboration between experimental and computational materials scientists. To be useful, the theory must be able to accurately predict the stability and properties of new materials, describe the physics of the experiments, and be applicable to new and complex structures-the all-electron full-potential linearized augmented plane wave (FLAPW) is one such method that provides the requisite level of numerical accuracy, albeit at the cost of complexity. Technical aspects and modifications related to the choice of basis functions (energy parameters, core-valence orthogonality, extended local orbitals) that affect the applicability and accuracy of the method are described, as well as an approach for obtaining k-independent matrix elements. The inclusion of external electric fields is illustrated by results for the induced densities at the surfaces of both magnetic and non-magnetic metals, and the relationship to image planes and to nonlinear effects such as second harmonic generation. The magnetic coupling of core hole excitations in Fe, the calculation of intrinsic defect formation energies, the concentration-dependent chemical potentials, entropic contributions, and the relative phase stability of Zr-rich Zr-Al alloys are also discussed.

85 citations


Cited by
More filters
Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: A review of surface modification techniques for titanium and titanium alloys can be found in this article, where the authors have shown that the wear resistance, corrosion resistance, and biological properties can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained.
Abstract: Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, in order to improve the biological, chemical, and mechanical properties, surface modification is often performed. This article reviews the various surface modification technologies pertaining to titanium and titanium alloys including mechanical treatment, thermal spraying, sol–gel, chemical and electrochemical treatment, and ion implantation from the perspective of biomedical engineering. Recent work has shown that the wear resistance, corrosion resistance, and biological properties of titanium and titanium alloys can be improved selectively using the appropriate surface treatment techniques while the desirable bulk attributes of the materials are retained. The proper surface treatment expands the use of titanium and titanium alloys in the biomedical fields. Some of the recent applications are also discussed in this paper.

3,019 citations

Journal ArticleDOI
TL;DR: The implementation of various DFT functionals and many‐body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures are discussed.
Abstract: During the past decade, computer simulations based on a quantum-mechanical description of the interactions between electrons and between electrons and atomic nuclei have developed an increasingly important impact on solid-state physics and chemistry and on materials science—promoting not only a deeper understanding, but also the possibility to contribute significantly to materials design for future technologies. This development is based on two important columns: (i) The improved description of electronic many-body effects within density-functional theory (DFT) and the upcoming post-DFT methods. (ii) The implementation of the new functionals and many-body techniques within highly efficient, stable, and versatile computer codes, which allow to exploit the potential of modern computer architectures. In this review, I discuss the implementation of various DFT functionals [local-density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functional mixing DFT, and exact (Hartree-Fock) exchange] and post-DFT approaches [DFT + U for strong electronic correlations in narrow bands, many-body perturbation theory (GW) for quasiparticle spectra, dynamical correlation effects via the adiabatic-connection fluctuation-dissipation theorem (AC-FDT)] in the Vienna ab initio simulation package VASP. VASP is a plane-wave all-electron code using the projector-augmented wave method to describe the electron-core interaction. The code uses fast iterative techniques for the diagonalization of the DFT Hamiltonian and allows to perform total-energy calculations and structural optimizations for systems with thousands of atoms and ab initio molecular dynamics simulations for ensembles with a few hundred atoms extending over several tens of ps. Applications in many different areas (structure and phase stability, mechanical and dynamical properties, liquids, glasses and quasicrystals, magnetism and magnetic nanostructures, semiconductors and insulators, surfaces, interfaces and thin films, chemical reactions, and catalysis) are reviewed. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008

2,364 citations

Journal ArticleDOI
TL;DR: The surfaces investigated in this study had no lateral strain in them, demonstrating that strain is not a necessary factor in the modification of bimetallic surface properties.
Abstract: The modification of the electronic and chemical properties of Pt(111) surfaces by subsurface 3d transition metals was studied using density-functional theory. In each case investigated, the Pt surface d-band was broadened and lowered in energy by interactions with the subsurface 3d metals, resulting in weaker dissociative adsorption energies of hydrogen and oxygen on these surfaces. The magnitude of the decrease in adsorption energy was largest for the early 3d transition metals and smallest for the late 3d transition metals. In some cases, dissociative adsorption was calculated to be endothermic. The surfaces investigated in this study had no lateral strain in them, demonstrating that strain is not a necessary factor in the modification of bimetallic surface properties. The implications of these findings are discussed in the context of catalyst design, particularly for fuel cell electrocatalysts.

1,081 citations