scispace - formally typeset
Search or ask a question
Author

J. Ruggiero

Bio: J. Ruggiero is an academic researcher from University of Paris-Sud. The author has contributed to research in topics: Electromagnetically induced transparency & Slow light. The author has an hindex of 8, co-authored 9 publications receiving 178 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an atomic frequency comb (AFC) was used to map a light field onto a thulium-doped crystal using an accurate spectral preparation of the sample.
Abstract: We demonstrate efficient and reversible mapping of a light field onto a thulium-doped crystal using an atomic frequency comb (AFC). Thanks to an accurate spectral preparation of the sample, we reach an efficiency of 9%. Our interpretation of the data is based on an original spectral analysis of the AFC. By independently measuring the absorption spectrum, we show that the efficiency is both limited by the available optical thickness and the preparation procedure at large absorption depth for a given bandwidth. The experiment is repeated with less than one photon per pulse and single photon counting detectors. We clearly observe that the AFC protocol is compatible with the noise level required for weak quantum field storage.

63 citations

Journal ArticleDOI
01 Jun 2008-EPL
TL;DR: In this article, the EIT windows were obtained for purely electronic spins in the presence of Doppler broadening and the positive role of collisions was emphasized through measurements of the power dependence of EIT resonance.
Abstract: Electromagnetically induced transparency (EIT) is observed in gaseous 4He at room temperature. Ultra-narrow (less than 10 kHz) EIT windows are obtained for the first time for purely electronic spins in the presence of Doppler broadening. The positive role of collisions is emphasized through measurements of the power dependence of the EIT resonance. The measurement of slow light opens up possible ways to applications.

31 citations

Journal ArticleDOI
TL;DR: In this article, the EIT windows were obtained for purely electronic spins in the presence of Doppler broadening and the positive role of collisions was emphasized through measurements of the power dependence of EIT resonance.
Abstract: Electromagnetically induced transparency (EIT) is observed in gaseous 4He at room temperature. Ultra-narrow (less than 10 kHz) EIT windows are obtained for the first time for purely electronic spins in the presence of Doppler broadening. The positive role of collisions is emphasized through measurements of the power dependence of the EIT resonance. Measurement of slow light opens up possible ways to applications.

28 citations

Journal ArticleDOI
TL;DR: Goldfarb et al. as discussed by the authors showed that it is possible to use optically detuned resonances (Fano-like profiles) to see a transition from slow light to negative group velocity.

18 citations

Journal ArticleDOI
TL;DR: The characteristics of EIT, namely, width of the transmission window and reduced group velocity of light, in this unusual basis, are theoretically and experimentally investigated and are shown to be essentially identical to those of standard EIT in the same system.
Abstract: The quantum coherence phenomenon of electromagnetically induced transparency (EIT) is observed in a three-level system composed of an excited state and two coherent superpositions of the two ground-state levels This peculiar ground state basis is composed of the so-called bright and dark states of the same atomic system in a standard coherent population trapping configuration The characteristics of EIT, namely, width of the transmission window and reduced group velocity of light, in this unusual basis, are theoretically and experimentally investigated and are shown to be essentially identical to those of standard EIT in the same system

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels, including optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the offresonant Faraday interaction.
Abstract: Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.

1,188 citations

Journal ArticleDOI
TL;DR: The last volume of the Progress in Optics series as discussed by the authors contains seven chapters on widely diverging topics, written by well-known authorities in their fields, including laser selective photophysics and photochemistry, laser phase profile generation, laser beamforming, and laser laser light emission from high-current surface spark discharges.
Abstract: Have you ever felt that the very title, Progress in Optics, conjured an image in your mind? Don’t you see a row of handsomely printed books, bearing the editorial stamp of one of the most brilliant members of the optics community, and chronicling the field of optics since the invention of the laser? If so, you are certain to move the bookend to make room for Volume 16, the latest of this series. It contains seven chapters on widely diverging topics, written by well-known authorities in their fields. These are: 1) Laser Selective Photophysics and Photochemistry by V. S. Letokhov, 2) Recent Advances in Phase Profiles (sic) Generation by J. J. Clair and C. I. Abitbol, 3 ) Computer-Generated Holograms: Techniques and Applications by W.-H. Lee, 4) Speckle Interferometry by A. E. Ennos, 5 ) Deformation Invariant, Space-Variant Optical Pattern Recognition by D. Casasent and D. Psaltis, 6) Light Emission from High-Current Surface-Spark Discharges by R. E. Beverly, and 7) Semiclassical Radiation Theory within a QuantumMechanical Framework by I. R. Senitzkt. The breadth of topic matter spanned by these chapters makes it impossible, for this reviewer at least, to pass judgement on the comprehensiveness, relevance, and completeness of every chapter. With an editorial board as prominent as that of Progress in Optics, however, it seems hardly likely that such comments should be necessary. It should certainly be possible to take the authority of each author as credible. The only remaining judgment to be made on these chapters is their readability. In short, what are they like to read? The first sentence of the first chapter greets the eye with an obvious typographical error: “The creation of coherent laser light source, that have tunable radiation, opened the . . . .” Two pages later we find: “When two types of atoms or molecules of different isotopic composition ( A and B ) have even one spectral line that does not overlap with others, it is pos-

1,071 citations

Posted Content
TL;DR: In this article, the authors compare the potential of different quantum repeater protocols quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons, and compare different approaches to realize quantum repeaters.
Abstract: The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here we review the theoretical and experimental status quo of this very active field. We compare the potential of different approaches quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.

930 citations

Posted Content
TL;DR: In this paper, the authors report on the state-of-the-art in the field of optical quantum memory, including criteria for successful quantum memory and current performance levels, as well as the current performance of quantum memory mechanisms.
Abstract: Quantum memory is important to quantum information processing in many ways: a synchronization device to match various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a tool to convert heralded photons to photons-on-demand. In addition to quantum computing, quantum memory would be instrumental for the implementation of long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied: optical delay lines, cavities, electromagnetically-induced transparency, photon-echo, and off-resonant Faraday interaction. Here we report on the state-of-the-art in the field of optical quantum memory, including criteria for successful quantum memory and current performance levels.

721 citations

Journal ArticleDOI
27 Jan 2011-Nature
TL;DR: The demonstration of entanglement between a photon at a telecommunication wavelength and a single collective atomic excitation stored in a crystal is reported, paving the way for building multiplexed quantum repeaters for long-distance quantum networks.
Abstract: Harnessing entanglement between light and material systems is of interest for future quantum information technologies. Two groups report advances in the development of the light–matter quantum interface that could pave the way for the construction of multiplexed quantum repeaters for long-distance quantum networks. Clausen et al. demonstrate entanglement between a photon at the telecommunication wavelength (1,338 nanometres) and a single collective atomic excitation stored in a neodymium-doped Y2SiO5 crystal. Saglamyurek et al. use a thulium-doped LiNbO3 waveguide to achieve a similar entanglement. Harnessing entanglement between light and material systems is of interest for future quantum information technologies. Here, entanglement is demonstrated between a photon at the telecommunication wavelength (1,338 nm) and a single collective atomic excitation stored in a crystal. These resources pave the way for building multiplexed quantum repeaters for long-distance quantum networks. Entanglement is the fundamental characteristic of quantum physics—much experimental effort is devoted to harnessing it between various physical systems. In particular, entanglement between light and material systems is interesting owing to their anticipated respective roles as ‘flying’ and stationary qubits in quantum information technologies (such as quantum repeaters1,2,3 and quantum networks4). Here we report the demonstration of entanglement between a photon at a telecommunication wavelength (1,338 nm) and a single collective atomic excitation stored in a crystal. One photon from an energy–time entangled pair5 is mapped onto the crystal and then released into a well-defined spatial mode after a predetermined storage time. The other (telecommunication wavelength) photon is sent directly through a 50-metre fibre link to an analyser. Successful storage of entanglement in the crystal is proved by a violation of the Clauser–Horne–Shimony–Holt inequality6 by almost three standard deviations (S = 2.64 ± 0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building multiplexed quantum repeaters7 for long-distance quantum networks.

461 citations