scispace - formally typeset
Search or ask a question
Author

J. S. Craven

Other affiliations: University of British Columbia
Bio: J. S. Craven is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Aerosol & Cloud condensation nuclei. The author has an hindex of 25, co-authored 37 publications receiving 2599 citations. Previous affiliations of J. S. Craven include University of British Columbia.

Papers
More filters
Journal ArticleDOI
Jasmin Tröstl1, Wayne Chuang2, Hamish Gordon3, Martin Heinritzi4, Chao Yan5, Ugo Molteni1, Lars Ahlm6, Carla Frege1, F. Bianchi1, F. Bianchi5, F. Bianchi7, Robert Wagner5, Mario Simon4, Katrianne Lehtipalo1, Katrianne Lehtipalo5, Christina Williamson8, Christina Williamson4, Christina Williamson9, J. S. Craven10, Jonathan Duplissy5, Jonathan Duplissy11, Alexey Adamov5, Joao Almeida3, Anne-Kathrin Bernhammer12, Martin Breitenlechner12, Sophia Brilke4, Antonio Dias3, Sebastian Ehrhart3, Richard C. Flagan10, Alessandro Franchin5, Claudia Fuchs1, Roberto Guida3, Martin Gysel1, Armin Hansel12, Christopher R. Hoyle1, Tuija Jokinen5, Heikki Junninen5, Juha Kangasluoma5, Helmi Keskinen5, Helmi Keskinen13, Helmi Keskinen9, Jaeseok Kim9, Jaeseok Kim13, Manuel Krapf1, Andreas Kürten4, Ari Laaksonen14, Ari Laaksonen13, Michael J. Lawler15, Michael J. Lawler13, Markus Leiminger4, Serge Mathot3, Ottmar Möhler16, Tuomo Nieminen11, Tuomo Nieminen5, Antti Onnela3, Tuukka Petäjä5, Felix Piel4, Pasi Miettinen13, Matti P. Rissanen5, Linda Rondo4, Nina Sarnela5, Siegfried Schobesberger9, Siegfried Schobesberger5, Kamalika Sengupta17, Mikko Sipilä5, James N. Smith18, James N. Smith13, Gerhard Steiner19, Gerhard Steiner12, Gerhard Steiner5, António Tomé20, Annele Virtanen13, Andrea Christine Wagner4, Ernest Weingartner1, Ernest Weingartner9, Daniela Wimmer4, Daniela Wimmer5, Paul M. Winkler19, Penglin Ye2, Kenneth S. Carslaw17, Joachim Curtius4, Josef Dommen1, Jasper Kirkby3, Jasper Kirkby4, Markku Kulmala5, Ilona Riipinen6, Douglas R. Worsnop11, Douglas R. Worsnop5, Neil M. Donahue5, Neil M. Donahue2, Urs Baltensperger1 
26 May 2016-Nature
TL;DR: It is shown that organic vapours alone can drive nucleation, and a particle growth model is presented that quantitatively reproduces the measurements and implements a parameterization of the first steps of growth in a global aerosol model that can change substantially in response to concentrations of atmospheric cloud concentration nuclei.
Abstract: About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Kohler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

507 citations

Journal ArticleDOI
Jasper Kirkby1, Jasper Kirkby2, Jonathan Duplissy3, Jonathan Duplissy4, Kamalika Sengupta5, Carla Frege6, Hamish Gordon1, Christina Williamson7, Christina Williamson2, Martin Heinritzi2, Martin Heinritzi8, Mario Simon2, Chao Yan4, Joao Almeida1, Joao Almeida2, Jasmin Tröstl6, Tuomo Nieminen3, Tuomo Nieminen4, Ismael K. Ortega, Robert Wagner4, Alexey Adamov4, António Amorim9, Anne-Kathrin Bernhammer8, F. Bianchi6, F. Bianchi10, Martin Breitenlechner8, Sophia Brilke2, Xuemeng Chen4, J. S. Craven11, Antonio Dias1, Sebastian Ehrhart2, Sebastian Ehrhart1, Richard C. Flagan11, Alessandro Franchin4, Claudia Fuchs6, Roberto Guida1, Jani Hakala4, Christopher R. Hoyle6, Tuija Jokinen4, Heikki Junninen4, Juha Kangasluoma4, Jaeseok Kim12, Jaeseok Kim7, Manuel Krapf6, Andreas Kürten2, Ari Laaksonen13, Ari Laaksonen12, Katrianne Lehtipalo6, Katrianne Lehtipalo4, Vladimir Makhmutov14, Serge Mathot1, Ugo Molteni6, Antti Onnela1, Otso Peräkylä4, Felix Piel2, Tuukka Petäjä4, Arnaud P. Praplan4, Kirsty J. Pringle5, Alexandru Rap5, N. A. D. Richards5, Ilona Riipinen15, Matti P. Rissanen4, Linda Rondo2, Nina Sarnela4, Siegfried Schobesberger7, Siegfried Schobesberger4, Catherine E. Scott5, John H. Seinfeld11, Mikko Sipilä4, Mikko Sipilä3, Gerhard Steiner16, Gerhard Steiner8, Gerhard Steiner4, Yuri Stozhkov14, Frank Stratmann17, António Tomé18, Annele Virtanen12, Alexander L. Vogel1, Andrea Christine Wagner2, Paul E. Wagner16, Ernest Weingartner6, Daniela Wimmer4, Daniela Wimmer2, Paul M. Winkler16, Penglin Ye19, Xuan Zhang11, Armin Hansel8, Josef Dommen6, Neil M. Donahue19, Douglas R. Worsnop12, Douglas R. Worsnop4, Urs Baltensperger6, Markku Kulmala3, Markku Kulmala4, Kenneth S. Carslaw5, Joachim Curtius2 
26 May 2016-Nature
TL;DR: Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Abstract: Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

502 citations

Journal ArticleDOI
TL;DR: This article measured a suite of gases and aerosols emitted from an 81 hectare pre-scribed fire in chaparral fuels on the central coast of Cali-fornia, US on 17 November 2009.
Abstract: Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the pro- duction and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare pre- scribed fire in chaparral fuels on the central coast of Cali- fornia, US on 17 November 2009. We also measured physi- cal and chemical changes that occurred in the isolated down- wind plume in the first 4 h after emission. The measure- ments were carried out onboard a Twin Otter aircraft outfit- ted with an airborne Fourier transform infrared spectrome- ter (AFTIR), aerosol mass spectrometer (AMS), single par- ticle soot photometer (SP2), nephelometer, LiCor CO2 an- alyzer, a chemiluminescence ozone instrument, and a wing- mounted meteorological probe. Our measurements included: CO2; CO; NOx; NH3; non-methane organic compounds; or- ganic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative hu- midity, barometric pressure, and three-dimensional wind ve- locity. The molar ratio of excess O3 to excess CO in the plume (1O3/1CO) increased from 5.13 (±1.13)◊ 10 3 to 10.2 (±2.16)◊ 10 2 in 4.5 h following smoke emis- sion. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73± 0.43 and 7.34± 3.03 (re- spectively) over the same time since emission. Based on the rapid decay of C2H4 we infer an in-plume average OH concentration of 5.27 (±0.97)◊ 10 6 molec cm 3 , consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammo- nium increase was a factor of 3.90± 2.93 in about 4 h, but accounted for just 36 % of the gaseous ammonia lost on a molar basis. Some of the gas phase NH3 loss may have been due to condensation on, or formation of, particles be- low the AMS detection range. NOx was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first 4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO2) increased by a fac- tor of 2.50± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary forma- tion of OA closely tracked the increase in scattering. In the California plume, however, 1OA/1CO2 decreased sharply for the first hour and then increased slowly with a net de- crease of 20 % over 4 h. The fraction of thickly coated rBC particles increased up to 85 % over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of par- ticle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies

281 citations

Journal ArticleDOI
TL;DR: Coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs is demonstrated, thereby opening up an avenue for analysis of the SOA formation process.
Abstract: Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

155 citations

Journal ArticleDOI
Hamish Gordon1, Kamalika Sengupta2, Alexandru Rap2, Jonathan Duplissy3, Carla Frege4, Christina Williamson5, Christina Williamson6, Christina Williamson7, Martin Heinritzi7, Mario Simon7, Chao Yan3, Joao Almeida7, Joao Almeida1, Jasmin Tröstl4, Tuomo Nieminen3, Tuomo Nieminen8, Ismael K. Ortega9, Robert Wagner3, Eimear M. Dunne2, Eimear M. Dunne10, Alexey Adamov3, António Amorim11, Anne-Kathrin Bernhammer12, F. Bianchi3, F. Bianchi4, Martin Breitenlechner12, Sophia Brilke7, Xuemeng Chen3, J. S. Craven13, Antonio Dias1, Sebastian Ehrhart7, Sebastian Ehrhart1, Lukas Fischer12, Richard C. Flagan13, Alessandro Franchin3, Claudia Fuchs4, Roberto Guida1, Jani Hakala3, Christopher R. Hoyle4, Christopher R. Hoyle14, Tuija Jokinen3, Heikki Junninen3, Juha Kangasluoma3, Jaeseok Kim8, Jasper Kirkby7, Jasper Kirkby1, Manuel Krapf4, Andreas Kürten7, Ari Laaksonen10, Ari Laaksonen8, Katrianne Lehtipalo3, Katrianne Lehtipalo4, Vladimir Makhmutov15, Serge Mathot1, Ugo Molteni4, S. A. Monks6, S. A. Monks5, Antti Onnela1, Otso Peräkylä3, Felix Piel7, Tuukka Petäjä3, Arnaud P. Praplan3, Kirsty J. Pringle2, N. A. D. Richards2, Matti P. Rissanen3, Linda Rondo7, Nina Sarnela3, Siegfried Schobesberger3, Catherine E. Scott2, John H. Seinfeld13, Sangeeta Sharma2, Mikko Sipilä3, Gerhard Steiner12, Gerhard Steiner16, Gerhard Steiner3, Yuri Stozhkov15, Frank Stratmann16, António Tomé11, Annele Virtanen8, Alexander L. Vogel1, Andrea Christine Wagner7, Paul E. Wagner16, Ernest Weingartner4, Daniela Wimmer3, Paul M. Winkler16, Penglin Ye17, Xuan Zhang13, Armin Hansel12, Josef Dommen4, Neil M. Donahue17, Douglas R. Worsnop3, Douglas R. Worsnop8, Urs Baltensperger4, Markku Kulmala3, Joachim Curtius7, Kenneth S. Carslaw2 
TL;DR: Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations, and the cooling forcing of anthropogenic aerosols is reduced.
Abstract: The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol–cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m − 2 (27%) to − 0.60 W m − 2 . Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: This paper presented an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing.
Abstract: . Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non-methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All EFs are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. Biomass burning terminology is defined to promote consistency. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr−1 of gas-phase NMOC, which is almost 3 times larger than most previous estimates. Selected recent results (e.g. measurements of HONO and the BB tracers HCN and CH3CN) are highlighted and key areas requiring future research are briefly discussed.

1,472 citations

Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: It is found that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies.
Abstract: Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

1,340 citations

Journal ArticleDOI
TL;DR: The Global Fire Emissions Database (GFED) as mentioned in this paper has been used to quantify global fire emissions patterns during 1997-2016, with the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia.
Abstract: . Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2 × 1015 grams of carbon per year (Pg C yr−1) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1) and minimum in 2013 (1.8 Pg C yr−1). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr−1. The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org .

1,135 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the current knowledge on aqueous phase organic reactions and combines evidence that points to a significant role of aqSOA formation in the atmosphere.
Abstract: . Progress has been made over the past decade in predicting secondary organic aerosol (SOA) mass in the atmosphere using vapor pressure-driven partitioning, which implies that SOA compounds are formed in the gas phase and then partition to an organic phase (gasSOA). However, discrepancies in predicting organic aerosol oxidation state, size and product (molecular mass) distribution, relative humidity (RH) dependence, color, and vertical profile suggest that additional SOA sources and aging processes may be important. The formation of SOA in cloud and aerosol water (aqSOA) is not considered in these models even though water is an abundant medium for atmospheric chemistry and such chemistry can form dicarboxylic acids and "humic-like substances" (oligomers, high-molecular-weight compounds), i.e. compounds that do not have any gas phase sources but comprise a significant fraction of the total SOA mass. There is direct evidence from field observations and laboratory studies that organic aerosol is formed in cloud and aerosol water, contributing substantial mass to the droplet mode. This review summarizes the current knowledge on aqueous phase organic reactions and combines evidence that points to a significant role of aqSOA formation in the atmosphere. Model studies are discussed that explore the importance of aqSOA formation and suggestions for model improvements are made based on the comprehensive set of laboratory data presented here. A first comparison is made between aqSOA and gasSOA yields and mass predictions for selected conditions. These simulations suggest that aqSOA might contribute almost as much mass as gasSOA to the SOA budget, with highest contributions from biogenic emissions of volatile organic compounds (VOC) in the presence of anthropogenic pollutants (i.e. NOx) at high relative humidity and cloudiness. Gaps in the current understanding of aqSOA processes are discussed and further studies (laboratory, field, model) are outlined to complement current data sets.

1,032 citations