scispace - formally typeset
Search or ask a question
Author

J. S. Lange

Bio: J. S. Lange is an academic researcher from University of Hamburg. The author has contributed to research in topics: Large Hadron Collider & Physics. The author has an hindex of 160, co-authored 2083 publications receiving 145919 citations. Previous affiliations of J. S. Lange include National Technical University of Athens & University of Trento.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a search for new physics in proton-proton collisions having final states with an electron or muon and missing transverse energy was presented, and exclusion limits of up to 3.28 TeV at a 95% confidence level for a W' boson with the same couplings as that of the standard model W boson were determined.
Abstract: A search for new physics in proton-proton collisions having final states with an electron or muon and missing transverse energy is presented. The analysis uses data collected in 2012 with the CMS detector, at an LHC center-of-mass energy of 8 TeV, and corresponding to an integrated luminosity of 19.7 inverse femtobarns. No significant deviation of the transverse mass distribution of the charged lepton-neutrino system from the standard model prediction is found. Mass exclusion limits of up to 3.28 TeV at a 95% confidence level for a W' boson with the same couplings as that of the standard model W boson are determined. Results are also derived in the framework of split universal extra dimensions, and exclusion limits on Kaluza-Klein W[KK,2] states are found. The final state with large missing transverse energy also enables a search for dark matter production with a recoiling W boson, with limits set on the mass and the production cross section of potential candidates. Finally, limits are established for a model including interference between a left-handed W' boson and the standard model W boson, and for a compositeness model.

132 citations

Journal ArticleDOI
B. P. Abbott, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese2  +1039 moreInstitutions (5)
TL;DR: In this article, an analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1) was conducted.
Abstract: Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.

132 citations

Journal ArticleDOI
M. Ablikim, M. N. Achasov1, Xiaocong Ai, O. Albayrak2  +407 moreInstitutions (53)
TL;DR: The first measurement of absolute hadronic branching fractions of Λ_{c}^{+} baryon at the Λ¬+Λ[over ¯]_{c]^{-} production threshold, in the 30 years since the Κ¬c{+} discovery is reported.
Abstract: We report the first measurement of absolute hadronic branching fractions of Lambda(+)(c) baryon at the Lambda(+)(c)(Lambda) over bar (-)(c) production threshold, in the 30 years since the Lambda(+)(c) discovery. In total, 12 Cabibbo-favored Lambda(+)(c) hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb(-1) of e(+)e(-) collisions at root s = 4.599 GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve the measured precision. Among the measurements for twelve Lambda(+)(c) decay modes, the branching fraction for Lambda(+)(c) -> pK(-)pi(+) is determined to be (5.84 +/- 0.27 +/- 0.23)%, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other 11 Cabibbo-favored hadronic decay modes are significantly improved.

131 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Dale Charles Abbott3, A. Abed Abud4  +3008 moreInstitutions (221)
TL;DR: In this article, the ATLAS particle-flow reconstruction method is used to reconstruct the topo-clusters of the proton-proton collision data with a center-of-mass energy of 13$ TeV collected by the LHC.
Abstract: Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36-81 fb$^{-1}$ of proton-proton collision data with a centre-of-mass energy of $\sqrt{s}=13$ TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti-$k_t$ jet algorithm with radius parameter $R=0.4$ is the primary jet definition used for both jet types. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several $\textit{in situ}$ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets ($|\eta| 2.5$ TeV). The relative jet energy resolution is measured and ranges from ($24 \pm 1.5$)% at 20 GeV to ($6 \pm 0.5$)% at 300 GeV.

131 citations

Journal ArticleDOI
TL;DR: In this article, a search for new high-mass resonances decaying into electron or muon pairs is presented, where upper limits on the product of a new resonance production cross section and branching fraction to dileptons are calculated in a model-independent manner.
Abstract: A search is presented for new high-mass resonances decaying into electron or muon pairs. The search uses proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the LHC in 2016, corresponding to an integrated luminosity of 36 fb$^{−1}$. Observations are in agreement with standard model expectations. Upper limits on the product of a new resonance production cross section and branching fraction to dileptons are calculated in a model-independent manner. This permits the interpretation of the limits in models predicting a narrow dielectron or dimuon resonance. A scan of different intrinsic width hypotheses is performed. Limits are set on the masses of various hypothetical particles. For the $ {Z}_{\mathrm{SSM}}^{\prime}\left({Z}_{{}^{\psi}}^{\prime}\right) $ particle, which arises in the sequential standard model (superstring-inspired model), a lower mass limit of 4.50 (3.90) TeV is set at 95% confidence level. The lightest Kaluza-Klein graviton arising in the Randall-Sundrum model of extra dimensions, with coupling parameters k/M$_{Pl}$ of 0.01, 0.05, and 0.10, is excluded at 95% confidence level below 2.10, 3.65, and 4.25 TeV, respectively. In a simplified model of dark matter production via a vector or axial vector mediator, limits at 95% confidence level are obtained on the masses of the dark matter particle and its mediator.

130 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: SciPy as discussed by the authors is an open source scientific computing library for the Python programming language, which includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics.
Abstract: SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.

12,774 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations