scispace - formally typeset
Search or ask a question
Author

J.S. Robinson

Bio: J.S. Robinson is an academic researcher from University of Reading. The author has contributed to research in topics: Soil water & Tithonia. The author has an hindex of 16, co-authored 28 publications receiving 1050 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an evidence-based argument for a more consistent approach to characterising growing media and for a clearer understanding of the practical and economic realities of modern soilless cultivation systems.

245 citations

Journal ArticleDOI
TL;DR: It was found that metal uptake and extractability increased significantly in the 50tha(-1) treatment, suggesting that soils which have received high applications of sewage sludge may be prone to fluctuations in metal availability.

158 citations

Journal ArticleDOI
TL;DR: In this paper, an appropriate ecosystems framework for soils should incorporate soil stocks (natural capital) showing their contribution to stock-flows and emergent fund-services as part of the supply chain.
Abstract: Natural capital and ecosystem service concepts are embodied in the ecosystems approach to sustainable development, which is a framework being consistently adopted by decision making bodies ranging from national governments to the United Nations. In the Millennium Ecosystem Assessment soils are given the vital role of a supporting service, but many of the other soil goods and services remain obscured. In this review we address this using and earth-system approach, highlighting the final goods and services soils produce, in a stock-fund, fund-service model of the pedosphere. We also argue that focusing on final goods and services will be counterproductive in the long run and emphasize that final goods and services are derived from an ecosystem supply chain that relies on ecological infrastructure. We propose that an appropriate ecosystems framework for soils should incorporate soil stocks (natural capital) showing their contribution to stock-flows and emergent fund-services as part of the supply chain. By so doing, an operational ecosystems concept for soils can draw on much more supporting data on soil stocks as demonstrated in a case study with soils data from England and Wales showing stocks, gaps in monitoring and drivers of change. Although the focus of this review is on soils, we believe the earth-system approach and principles of the ecosystem supply chain are widely applicable to the ecosystems approach and bring clarity in terms of where goods and services are derived from.

151 citations

Journal ArticleDOI
TL;DR: In this article, heat-treated animal bone char (ABC) has been evaluated for its potential as a phosphorus (P) fertilizer, and the most important soil properties determining P dissolution from ABC were pH and P sorption.
Abstract: Heat-treated animal bone char (ABC) has not previously been evaluated for its potential as a phosphorus (P) fertilizer. ABC, Gafsa phosphate rock (GPR) and triple superphosphate fertilizer (TSP) were incubated in 12 soils. Dissolved-P was assessed by extraction with NaOH and bioavailability with the Olsen extractant. The rate of P dissolution from ABC was described almost equally well by the Elovich and Power equations. After 145 days, the fraction of P dissolved ranged from 0 to 73% and to 56% for ABC and GPR, respectively. The most important soil properties determining P dissolution from ABC were pH and P sorption. P dissolution was not significant at soil pH >6.1 (ABC) and >5 (GPR) and the lower the pH, the greater the Dissolved-P. Dissolved-P also correlated positively and significantly with inorganic P sorption, measured by the Freundlich isotherm and the P sorption index of Bache and Williams (1971). Soil pH and P sorption index could be combined in multiple regression equations that use readily measured soil properties to predict the potential for ABC dissolution in a soil. Dissolution of P from GPR correlated with soil pH and exchangeable acidity. In comparison with GPR, ABC was a better source of available P, assessed by Olsen-P. In most soils, ABC increased Olsen-P immediately after application, including soils of relatively high pH in which GPR was ineffective. ABC is a P fertilizer of solubility intermediate between GPR and TSP.

100 citations

Journal ArticleDOI
TL;DR: In this paper, the main byproduct of the cocoa harvest, the pod husk (CPH), is used for animal feed, as a starting material for soap making and activated carbon.
Abstract: Cocoa pod husk (CPH) is the main by-product (ca. 70–75% weight of whole fruit) of the cocoa harvest, an important and economic crop in developing countries. It is a rich source of minerals (particularly potassium), fibre (including lignin, cellulose, hemicellulose and pectin) and antioxidants (e.g. phenolic acids). An existing practise is the return of CPH to soil with potential benefits (or disadvantages) for cocoa productivity and soil sustainability that have not been fully characterised. Currently, alternative low-value applications of CPH include its use as animal feed, as a starting material for soap making and activated carbon. Other biotechnological valorisation potentials for CPH and its fractions include the production of bio-fuels and their incorporation in food systems. Physical, chemical or biological pre-treatment approaches are needed in order to achieve desirable fractions in a cost-effective and sustainable manner for novel applications in food and non-food sectors.

79 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: Features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen.
Abstract: The rhizosphere is a complex environment where roots interact with physical, chemical and biological properties of soil. Structural and functional characteristics of roots contribute to rhizosphere processes and both have significant influence on the capacity of roots to acquire nutrients. Roots also interact extensively with soil microorganisms which further impact on plant nutrition either directly, by influencing nutrient availability and uptake, or indirectly through plant (root) growth promotion. In this paper, features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen. The interaction of roots with soil microorganisms, in particular with mycorrhizal fungi and non-symbiotic plant growth promoting rhizobacteria, is also considered in relation to nutrient availability and through the mechanisms that are associated with plant growth promotion.

1,476 citations

Journal ArticleDOI
TL;DR: The combination of soil pH and organic matter content would produce the more precise regression models for estimation of EDTA-Cu, Pb and Zn contents in soils, demonstrating the distinct effect of the two factors on the availability of these heavy metals in soils.

960 citations

Journal ArticleDOI
TL;DR: This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them, and addresses the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry.
Abstract: Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.

946 citations

DOI
01 Jan 2010
TL;DR: A critical review of the current state of knowledge regarding the effects of biochar application to soil on soil properties and functions is provided in this paper, where the main focus is providing a sound scientific basis for policy development, to identify gaps in current knowledge, and to recommend further research relating to biochar applications to soils.
Abstract: Biochar application to soils is being considered as a means to sequester carbon (C) while concurrently improving soil functions. The main focus of this report is providing a critical scientific review of the current state of knowledge regarding the effects of biochar application to soils on soil properties and functions. Wider issues, including atmospheric emissions and occupational health and safety associated to biochar production and handling, are put into context. The aim of this review is to provide a sound scientific basis for policy development, to identify gaps in current knowledge, and to recommend further research relating to biochar application to soils. See Table 1 for an overview of the key findings from this report. Biochar research is in its relative infancy and as such substantially more data are required before robust predictions can be made regarding the effects of biochar application to soils, across a range of soil, climatic and land management factors. Definition In this report, biochar is defined as: “charcoal (biomass that has been pyrolysed in a zero or low oxygen environment) for which, owing to its inherent properties, scientific consensus exists that application to soil at a specific site is expected to sustainably sequester carbon and concurrently improve soil functions (under current and future management), while avoiding shortand long-term detrimental effects to the wider environment as well as human and animal health." Biochar as a material is defined as: "charcoal for application to soils". It should be noted that the term 'biochar' is generally associated with other co-produced end products of pyrolysis such as 'syngas'. However, these are not usually applied to soil and as such are only discussed in brief in the report. Biochar properties Biochar is an organic material produced via the pyrolysis of C-based feedstocks (biomass) and is best described as a ‘soil conditioner’. Despite many different materials having been proposed as biomass feedstock for biochar (including wood, crop residues and manures), the suitability of each feedstock for such an application is dependent on a number of chemical, physical, environmental, as well as economic and logistical factors. Evidence suggests that components of the carbon in biochar are highly recalcitrant in soils, with reported residence times for wood biochar being in the range of 100s to 1,000s of years, i.e. approximately 101,000 times longer than residence times of most soil organic matter. Therefore, biochar addition to soil can provide a potential sink for C. It is important to note, however, that there is a paucity of data concerning biochar produced from feedstocks other than wood, but the information that is available is discussed in the report. Owing to the current interest in climate change mitigation, and the irreversibility of biochar application to soil, an effective evaluation of biochar stability in the environment and its effects on soil processes and functioning is paramount. The current state of knowledge concerning these factors is discussed throughout this report.

801 citations