scispace - formally typeset
Search or ask a question
Author

J. Slack

Bio: J. Slack is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Electrochromism & Thin film. The author has an hindex of 19, co-authored 39 publications receiving 1187 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported in this paper, where a thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.
Abstract: A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

336 citations

Journal ArticleDOI
TL;DR: In this article, a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C, was reported over 20 to 100 cycles.

94 citations

Journal Article
TL;DR: In this paper, a large dynamic range from 85 percent and 10 percent photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles.
Abstract: Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85 percent and 10 percent photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65 percent volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60 percent to 44 percent T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

87 citations

Journal ArticleDOI
TL;DR: In this article, Pd-capped metallic films containing magnesium and first row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte.
Abstract: Thin, Pd-capped metallic films containing magnesium and first row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte. Reversion to the reflecting state is achieved by exposure to air or by anodic polarization. The films were prepared by co-sputtering from one magnesium target and one manganese, iron, or cobalt target. Both the dynamic optical switching range and the speed of the transition depend on the magnesium-transition metal ratio. Infrared spectra of films in the transparent, hydrided (deuterided) states support the presence of the intermetallic hydride phases Mg3MnH7, Mg2FeH6, and Mg2CoH5.

87 citations


Cited by
More filters
01 Jan 2016

1,633 citations

Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Journal ArticleDOI
TL;DR: In this article, the progress that has taken place since 1993 with regard to film deposition, characterization by physical and chemical techniques, optical properties, as well as electrochromic device assembly and performance is reviewed.

1,304 citations

Journal ArticleDOI
TL;DR: In this paper, a conceptual model for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal ammorphous state, is given for thin film deposition by sputtering, electronic band structure and ion diffusion.
Abstract: Electrochromic (EC) materials are able to change their optical properties, reversibly and persistently, by the application of an electrical voltage. These materials can be integrated in multilayer devices capable of modulating the optical transmittance between widely separated extrema. We first review the recent literature on inorganic EC materials and point out that today's research is focused on tungsten oxide (colouring under charge insertion) and nickel oxide (colouring under charge extraction). The properties of thin films of these materials are then discussed in detail with foci on recent results from two comprehensive investigations in the authors' laboratory. A logical exposition is obtained by covering, in sequence, structural features, thin film deposition (by sputtering), electronic band structure, and ion diffusion. A novel conceptual model is given for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal amorphous state. It is also shown that the conduction band density of states is obtainable from simple electrochemical chronopotentiometry. Ion intercalation causes the charge-compensating electrons to enter localized states, implying that the optical absorption underlying the electrochromism can be described as ensuing from transitions between occupied and empty localized conduction band states. A fully quantitative theory of such transitions is not available, but the optical absorption can be modeled more phenomenologically as due to a superposition of transitions between different charge states of the W ions (6+, 5+, and 4+). The Ni oxide films were found to have a porous structure comprised of small grains. The data are consistent with EC coloration being a surface phenomenon, most likely confined to the outer parts of the grains. Initial electrochemical cycling was found to transform hydrated Ni oxide into hydroxide and oxy-hydroxide phases on the grain surfaces. Electrochromism in thus stabilized films is consistent with reversible changes between Ni hydroxide and oxy-hydroxide, in accordance with the Bode reaction scheme. An extension of this model is put forward to account for changes of NiO to Ni2O3. It was demonstrated that electrochromism is associated solely with proton transfer. Data on chemical diffusion coefficients are interpreted for polycrystalline W oxide and Ni oxide in terms of the lattice gas model with interaction. The later part of this review is of a more technological and applications oriented character and is based on the fact that EC devices with large optical modulation can be accomplished essentially by connecting W-oxide-based and Ni-oxide-based films through a layer serving as a pure ion conductor. Specifically, we treat methods to enhance the bleached-state transmittance by mixing the Ni oxide with other oxides characterized by wide band gaps, and we also discuss pre-assembly charge insertion and extraction by facile gas treatments of the films, as well as practical device manufacturing and device testing. Here the emphasis is on novel flexible polyester-foil-based devices. The final part deals with applications with emphasis on architectural “smart” windows capable of achieving improved indoor comfort jointly with significant energy savings due to lowered demands for space cooling. Eyewear applications are touched upon as well.

1,156 citations

Journal ArticleDOI
TL;DR: The Robust Envelope Construction Details for Buildings of the 21st Century (ROBUST) project as mentioned in this paper was supported by the Research Council of Norway, AF Gruppen, Glava, Hunton Fiber as, Icopal, Isola, Jackon, maxit, Moelven ByggModul, Ramboll, Skanska, Statsbygg and Takprodusentenes forskningsgruppe through the SINTEF/NTNU research project.

1,127 citations