scispace - formally typeset
Search or ask a question
Author

J.V. Seguro

Bio: J.V. Seguro is an academic researcher from Colorado State University. The author has contributed to research in topics: Wind speed & Weibull distribution. The author has an hindex of 1, co-authored 1 publications receiving 792 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, three methods for calculating the parameters of the Weibull wind speed distribution for wind energy analysis are presented: the maximum likelihood method, the proposed modified maximum likelihood (MML) method, and the commonly used graphical method.

864 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A model to include wind energy conversion system (WECS) generators in the ED problem is developed, and in addition to the classic economic dispatch factors, factors to account for both overestimation and underestimation of available wind power are included.
Abstract: In solving the electrical power systems economic dispatch (ED) problem, the goal is to find the optimal allocation of output power among the various generators available to serve the system load. With the continuing search for alternatives to conventional energy sources, it is necessary to include wind energy conversion system (WECS) generators in the ED problem. This paper develops a model to include the WECS in the ED problem, and in addition to the classic economic dispatch factors, factors to account for both overestimation and underestimation of available wind power are included. With the stochastic wind speed characterization based on the Weibull probability density function, the optimization problem is numerically solved for a scenario involving two conventional and two wind-powered generators. Optimal solutions are presented for various values of the input parameters, and these solutions demonstrate that the allocation of system generation capacity may be influenced by multipliers related to the risk of overestimation and to the cost of underestimation of available wind power.

960 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the use of the probability density function (PDF) of wind speed is carried out for a wide collection of models, and the methods that have been used to estimate the parameters on which these models depend are reviewed and the degree of complexity of the estimation is analyzed in function of the model selected.
Abstract: The probability density function (PDF) of wind speed is important in numerous wind energy applications. A large number of studies have been published in scientific literature related to renewable energies that propose the use of a variety of PDFs to describe wind speed frequency distributions. In this paper a review of these PDFs is carried out. The flexibility and usefulness of the PDFs in the description of different wind regimes (high frequencies of null winds, unimodal, bimodal, bitangential regimes, etc.) is analysed for a wide collection of models. Likewise, the methods that have been used to estimate the parameters on which these models depend are reviewed and the degree of complexity of the estimation is analysed in function of the model selected: these are the method of moments (MM), the maximum likelihood method (MLM) and the least squares method (LSM). In addition, a review is conducted of the statistical tests employed to see whether a sample of wind data comes from a population with a particular probability distribution. With the purpose of cataloguing the various PDFs, a comparison is made between them and the two parameter Weibull distribution (W.pdf), which has been the most widely used and accepted distribution in the specialised literature on wind energy and other renewable energy sources. This comparison is based on: (a) an analysis of the degree of fit of the continuous cumulative distribution functions (CDFs) for wind speed to the cumulative relative frequency histograms of hourly mean wind speeds recorded at weather stations located in the Canarian Archipelago; (b) an analysis of the degree of fit of the CDFs for wind power density to the cumulative relative frequency histograms of the cube of hourly mean wind speeds recorded at the aforementioned weather stations. The suitability of the distributions is judged from the coefficient of determination R2. Amongst the various conclusions obtained, it can be stated that the W.pdf presents a series of advantages with respect to the other PDFs analysed. However, the W.pdf cannot represent all the wind regimes encountered in nature such as, for example, those with high percentages of null wind speeds, bimodal distributions, etc. Therefore, its generalised use is not justified and it will be necessary to select the appropriate PDF for each wind regime in order to minimise errors in the estimation of the energy produced by a WECS (wind energy conversion system). In this sense, the extensive collection of PDFs proposed in this paper comprises a valuable catalogue.

690 citations

01 Jan 2009
TL;DR: In this paper, a review of the use of the probability density function (PDF) of wind speed is carried out for a wide collection of models, and the methods that have been used to estimate the parameters on which these models depend are reviewed and the degree of complexity of the estimation is analyzed in function of the model selected.
Abstract: The probability density function (PDF) of wind speed is important in numerous wind energy applications. A large number of studies have been published in scientific literature related to renewable energies that propose the use of a variety of PDFs to describe wind speed frequency distributions. In this paper a review of these PDFs is carried out. The flexibility and usefulness of the PDFs in the description of different wind regimes (high frequencies of null winds, unimodal, bimodal, bitangential regimes, etc.) is analysed for a wide collection of models. Likewise, the methods that have been used to estimate the parameters on which these models depend are reviewed and the degree of complexity of the estimation is analysed in function of the model selected: these are the method of moments (MM), the maximum likelihood method (MLM) and the least squares method (LSM). In addition, a review is conducted of the statistical tests employed to see whether a sample of wind data comes from a population with a particular probability distribution. With the purpose of cataloguing the various PDFs, a comparison is made between them and the two parameter Weibull distribution (W.pdf), which has been the most widely used and accepted distribution in the specialised literature on wind energy and other renewable energy sources. This comparison is based on: (a) an analysis of the degree of fit of the continuous cumulative distribution functions (CDFs) for wind speed to the cumulative relative frequency histograms of hourly mean wind speeds recorded at weather stations located in the Canarian Archipelago; (b) an analysis of the degree of fit of the CDFs for wind power density to the cumulative relative frequency histograms of the cube of hourly mean wind speeds recorded at the aforementioned weather stations. The suitability of the distributions is judged from the coefficient of determination R2. Amongst the various conclusions obtained, it can be stated that the W.pdf presents a series of advantages with respect to the other PDFs analysed. However, the W.pdf cannot represent all the wind regimes encountered in nature such as, for example, those with high percentages of null wind speeds, bimodal distributions, etc. Therefore, its generalised use is not justified and it will be necessary to select the appropriate PDF for each wind regime in order to minimise errors in the estimation of the energy produced by a WECS (wind energy conversion system). In this sense, the extensive collection of PDFs proposed in this paper comprises a valuable catalogue.

634 citations

Journal ArticleDOI
TL;DR: In this article, the wind energy potential of the region is statistically analyzed based on 1-year measured hourly time-series wind speed data and distributional parameters are identified, and two probability density functions are fitted to the measured probability distributions on a monthly basis.

474 citations

Journal ArticleDOI
TL;DR: In this paper, a new method is developed to estimate Weibull distribution parameters for wind energy applications, which is called power density (PD) method and it has simple formulation, it does not require binning and solving linear least square problem or iterative procedure.

455 citations