scispace - formally typeset
Search or ask a question
Author

J.W. Christian

Bio: J.W. Christian is an academic researcher from University of Oxford. The author has contributed to research in topics: Crystal & Nucleation. The author has an hindex of 10, co-authored 16 publications receiving 8273 citations.

Papers
More filters
Book
01 Jan 1965
TL;DR: In this paper, the authors present a general introduction to the theory of transformation kinetics of real metals, including the formation and evolution of martensitic transformations, as well as a theory of dislocations.
Abstract: Part I General introduction. Formal geometry of crystal lattices. The theory of reaction rates. The thermodynamics of irreversable processes. The structure of real metals. Solids solutions. The theory of dislocations. Polycrystalline aggregates. Diffusion in the solid state. The classical theory of nucleation. Theory of thermally activated growth. Formal theory of transformation kinetics. Part II Growth from the vapour phase. Solidification and melting. Polymorphic Changes. Precipitation from supersaturated solid solution. Eutectoidal transformations. Order-disorder transformations. Recovery recrystalisation and grain growth. Deformation twinning. Characteristics of martensic transformations. Crystallography of martensitic transformations. Kinetics of martensitic transformations. Rapid solidification. Bainite steels. Shape memory alloys.

3,397 citations

Book ChapterDOI
01 Jan 2002
TL;DR: The theory of transformations is a description of a particular class of irreversible processes and may appropriately be described as kinetic as discussed by the authors, which is a connection between the microscopic properties of the systems of the assembly and the macroscopic (measurable) properties is made by statistical mechanics.
Abstract: Classical thermodynamics is concerned primarily with the interdependence of certain well-defined macroscopic concepts (temperature, pressure, entropy, energy, composition, etc.) possessed by a closed assembly. The usual thermodynamic equations are valid only for assemblies at equilibrium and for reversible transitions among such equilibrated assemblies. When thermodynamic considerations are applied to irreversible (i.e. “natural”) processes, the equations become inequalities, and are much less useful. For example, the principle of increase in entropy during an adiabatic irreversible process provides information only about the direction of the change. The theory of transformations is a description of a particular class of irreversible processes. This type of theory is the main concern of this chapter and may appropriately be described as kinetic. The connection between the microscopic properties of the systems of the assembly and the macroscopic (measurable) properties is made by statistical mechanics. The thermodynamics of irreversible processes has also been applied to chemical reactions, though only in the limiting case of very close approach to equilibrium.

126 citations


Cited by
More filters
Journal ArticleDOI
Akihisa Inoue1
TL;DR: In this article, the authors investigated the stabilization properties of the supercooled liquid for a number of alloys in the Mg-, lanthanide-, Zr-, Ti-, Fe-, Co-, Pd-Cu- and Ni-based systems.

5,173 citations

Journal ArticleDOI
TL;DR: In this article, a selfconsistent and logical account of key issues on Ti-Ni-based alloys from physical metallurgy viewpoint on an up-to-date basis is presented.

3,484 citations

MonographDOI
06 Nov 2008
TL;DR: A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials as discussed by the authors.
Abstract: A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials To ensure that the student gains a thorough understanding the authors present the fundamental mechanisms that operate at micro- and nano-meter level across a wide-range of materials, in a way that is mathematically simple and requires no extensive knowledge of materials This integrated approach provides a conceptual presentation that shows how the microstructure of a material controls its mechanical behavior, and this is reinforced through extensive use of micrographs and illustrations New worked examples and exercises help the student test their understanding Further resources for this title, including lecture slides of select illustrations and solutions for exercises, are available online at wwwcambridgeorg/97800521866758

2,905 citations

Journal ArticleDOI
TL;DR: In this article, a new analysis tool was developed to quantify the experimentally observed changes in morphology of portlandite, allowing the calculation of the relative surface energies of the crystal facets.

2,498 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore a theoretical approach to these fine phase mixtures based on the minimization of free energy and show that the α-phase breaks up into triangular domains called Dauphine twins which become finer and finer in the direction of increasing temperature.
Abstract: Solid-solid phase transformations often lead to certain characteristic microstructural features involving fine mixtures of the phases. In martensitic transformations one such feature is a plane interface which separates one homogeneous phase, austenite, from a very fine mixture of twins of the other phase, martensite. In quartz crystals held in a temperature gradient near the α-β transformation temperature, the α-phase breaks up into triangular domains called Dauphine twins which become finer and finer in the direction of increasing temperature. In this paper we explore a theoretical approach to these fine phase mixtures based on the minimization of free energy.

1,488 citations