scispace - formally typeset
Search or ask a question
Author

J. W. Coenen

Bio: J. W. Coenen is an academic researcher from Forschungszentrum Jülich. The author has contributed to research in topics: Tungsten & Divertor. The author has an hindex of 38, co-authored 165 publications receiving 4651 citations. Previous affiliations of J. W. Coenen include Culham Centre for Fusion Energy & Oak Ridge National Laboratory.
Topics: Tungsten, Divertor, Jet (fluid), Tokamak, Plasma


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, surface morphology changes of tungsten caused by heat and particle loadings from edge plasmas, and their effects on enhanced erosion and material lifetime in ITER and beyond.

239 citations

Journal ArticleDOI
TL;DR: In this article, the ITER-like wall (ILW) experiment at JET was used to demonstrate the plasma compatibility with metallic walls and the reduction in fuel retention, which confirmed the expected predictions concerning the plasma-facing material change in ITER and is in line with identification of fuel co-deposition with Be as the main mechanism for the residual long-term retention.
Abstract: JET underwent a transformation from a full carbon-dominated tokamak to a fully metallic device with beryllium in the main chamber and a tungsten divertor. This material combination is foreseen for the activated phase of ITER. The ITER-Like Wall (ILW) experiment at JET shall demonstrate the plasma compatibility with metallic walls and the reduction in fuel retention. We report on a set of experiments (Ip = 2.0 MA, Bt = 2.0–2.4 T, δ = 0.2–0.4) in different confinement and plasma conditions with global gas balance analysis demonstrating a strong reduction in the long-term retention rate by more than a factor of 10 with respect to carbon-wall reference discharges. All experiments are executed in a series of identical plasma discharges in order to achieve maximum plasma duration until the analysis limit of the active gas handling system is reached. The composition analysis shows high purity of the recovered gas, typically 99% D. For typical L-mode discharges (Paux = 0.5 MW), type III (Paux = 5.0 MW) and type-I ELMy H-mode plasmas (Paux = 12.0 MW) a drop of the deuterium retention rate normalized to the operational time in divertor configuration is measured from 1.27 × 1021, 1.37 × 1021 and 1.97 × 1021 D s−1 down to 4.8 × 1019, 7.2 × 1019 and 16 × 1019 D s−1, respectively. The dynamic retention increases in the limiter phase in comparison with carbon-fibre composite, but also the outgassing after the discharge has risen in the same manner and overcompensates this transient retention. Overall an upper limit of the long-term retention rate of 1.5 × 1020 D s−1 is obtained with the ILW. The observed reduction by one order of magnitude confirms the expected predictions concerning the plasma-facing material change in ITER and is in line with identification of fuel co-deposition with Be as the main mechanism for the residual long-term retention. The reduction widens the operational space without active cleaning in the DT phase in comparison with a full carbon device.

194 citations

Journal ArticleDOI
X. Litaudon, S. Abduallev1, Mitul Abhangi, P. Abreu2  +1225 moreInstitutions (69)
TL;DR: In this paper, the authors reviewed the 2014-2016 JET results in the light of their significance for optimising the ITER research plan for the active and non-active operation, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric.
Abstract: The 2014-2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L-H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at β N ∼ 1.8 and n/n GW ∼ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D-T campaign and 14 MeV neutron calibration strategy are reviewed.

162 citations

Journal ArticleDOI
Thomas Klinger1, Thomas Klinger2, Tamara Andreeva1, S. Bozhenkov1  +442 moreInstitutions (31)
TL;DR: The Wendelstein 7-X superconducting stellarator was used for the first high-performance plasma operation as discussed by the authors, achieving densities of up to 4.5 GHz with helium gas fueling.
Abstract: The optimized superconducting stellarator device Wendelstein 7-X (with major radius $R=5.5\,\mathrm{m}$, minor radius $a=0.5\,\mathrm{m}$, and $30\,\mathrm{m}^3$ plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of $1-4.5\cdot 10^{19}\,\mathrm{m}^{-3}$ with central electron temperatures $5-10\,\mathrm{keV}$ were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. Plasma densities up to $1.4\cdot 10^{20}\,\mathrm{m}^{-3}$were reached with hydrogen pellet injection and helium gas fueling. Here, the ions are indirectly heated, and at a central density of $8\cdot 10^{19}\,\mathrm{m}^{-3}$ a temperature of $3.4\,\mathrm{keV}$ with $T_e/T_i=1$ was accomplished, which corresponds to $nT_i(0)\tau_E=6.4\cdot 10^{19}\,\mathrm{keVs}/\mathrm{m}^3$ with a peak diamagnetic energy of $1.1\,\mathrm{MJ}$. The discharge behaviour has further improved with boronization of the wall. After boronization, the oxygen impurity content was reduced by a factor of 10, the carbon impurity content by a factor of 5. The reduced (edge) plasma radiation level gives routinely access to higher densities without radiation collapse, e.g. well above $1\cdot 10^{20}\,\mathrm{m}^{-2}$ line integrated density and $T_e=T_i=2\,\mathrm{keV}$ central temperatures at moderate ECRH power. Both X2 and O2 mode ECRH schemes were successfully applied. Core turbulence was measured with a phase contrast imaging diagnostic and suppression of turbulence during pellet injection was observed.

154 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal Article

1,306 citations

01 Jan 1999

643 citations

01 Jan 1985

626 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider the risks engendered by the baseline divertor strategy with regard to known W plasma-material interaction issues and briefly present the current status of a possible full-tungsten (W) divertor design.

610 citations