scispace - formally typeset
Search or ask a question
Author

J. William Murdock

Other affiliations: Georgia Institute of Technology
Bio: J. William Murdock is an academic researcher from IBM. The author has contributed to research in topics: Question answering & Knowledge integration. The author has an hindex of 14, co-authored 37 publications receiving 2645 citations. Previous affiliations of J. William Murdock include Georgia Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.
Abstract: IBM Research undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV Quiz show, Jeopardy! The extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The Jeopardy! Challenge helped us address requirements that led to the design of the DeepQA architecture and the implementation of Watson. After 3 years of intense research and development by a core team of about 20 researches, Watson is performing at human expert-levels in terms of precision, confidence and speed at the Jeopardy! Quiz show. Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.

1,446 citations

Journal ArticleDOI
TL;DR: The SHOP2 planning system as discussed by the authors received one of the awards for distinguished performance in the 2002 International Planning Competition and described the features that enabled it to excel in the competition, especially those aspects of SHOP 2 that deal with temporal and metric planning domains.
Abstract: The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains.

838 citations

Journal ArticleDOI
TL;DR: WatsonPaths is a novel system that can answer scenario-based questions that present a patient summary and ask for the most likely diagnosis or most appropriate treatment, and shows a significant improvement in accuracy over multiple baselines.
Abstract: We present WatsonPaths, a novel system that can answer scenario-based questions. These include medical questions that present a patient summary and ask for the most likely diagnosis or most appropriate treatment. WatsonPaths builds on the IBM Watson question answering system. WatsonPaths breaks down the input scenario into individual pieces of information, asks relevant subquestions of Watson to conclude new information, and represents these results in a graphical model. Probabilistic inference is performed over the graph to conclude the answer. On a set of medical test preparation questions, WatsonPaths shows a significant improvement in accuracy over multiple baselines.

70 citations

Book ChapterDOI
12 Jun 1996
TL;DR: This work describes how the structure-behavior-function (SBF) device models in an autonomous knowledge-based design system called KRITIK enable device explanation and exploration in an interactive design and learning environment called Interactive Kritik.
Abstract: Knowledge-based support for learning about physical devices is a classical problem in research on intelligent tutoring systems (ITS). The large amount of knowledge engineering needed, however, presents a major difficulty in constructing ITS's for learning how devices work. Many knowledge-based design systems, on the other hand, already contain libraries of device designs and models. This provides an opportunity for reusing the legacy device libraries for supporting the learning of how devices work. We report on an experiment on the computational feasibility of this reuse of device libraries. In particular, we describe how the structure-behavior-function (SBF) device models in an autonomous knowledge-based design system called KRITIK enable device explanation and exploration in an interactive design and learning environment called Interactive Kritik.

56 citations

Book ChapterDOI
23 Oct 2011
TL;DR: A high-level overview of the TyCor framework is provided and how it is integrated in Watson is discussed, focusing on and evaluating three TyCor components that leverage the community built semi-structured and structured knowledge resources -- DBpedia, Wikipedia Categories and Lists.
Abstract: Watson, the winner of the Jeopardy! challenge, is a state-of-the-art open-domain Question Answering system that tackles the fundamental issue of answer typing by using a novel type coercion (TyCor) framework, where candidate answers are initially produced without considering type information, and subsequent stages check whether the candidate can be coerced into the expected answer type. In this paper, we provide a high-level overview of the TyCor framework and discuss how it is integrated in Watson, focusing on and evaluating three TyCor components that leverage the community built semi-structured and structured knowledge resources -- DBpedia (in conjunction with the YAGO ontology), Wikipedia Categories and Lists. These resources complement each other well in terms of precision and granularity of type information, and through links to Wikipedia, provide coverage for a large set of instances.

42 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Posted Content
TL;DR: The Stanford Question Answering Dataset (SQuAD) as mentioned in this paper is a reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage.
Abstract: We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at this https URL

4,336 citations

Journal ArticleDOI
TL;DR: The Visual Genome dataset as mentioned in this paper contains over 108k images where each image has an average of $35$35 objects, $26$26 attributes, and $21$21 pairwise relationships between objects.
Abstract: Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in an image. When asked "What vehicle is the person riding?", computers will need to identify the objects in an image as well as the relationships riding(man, carriage) and pulling(horse, carriage) to answer correctly that "the person is riding a horse-drawn carriage." In this paper, we present the Visual Genome dataset to enable the modeling of such relationships. We collect dense annotations of objects, attributes, and relationships within each image to learn these models. Specifically, our dataset contains over 108K images where each image has an average of $$35$$35 objects, $$26$$26 attributes, and $$21$$21 pairwise relationships between objects. We canonicalize the objects, attributes, relationships, and noun phrases in region descriptions and questions answer pairs to WordNet synsets. Together, these annotations represent the densest and largest dataset of image descriptions, objects, attributes, relationships, and question answer pairs.

3,842 citations

Proceedings ArticleDOI
16 Jun 2016
TL;DR: The Stanford Question Answering Dataset (SQuAD) as mentioned in this paper is a reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage.
Abstract: We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at this https URL

3,667 citations

Journal ArticleDOI
TL;DR: An overview of the DBpedia community project is given, including its architecture, technical implementation, maintenance, internationalisation, usage statistics and applications, including DBpedia one of the central interlinking hubs in the Linked Open Data (LOD) cloud.
Abstract: The DBpedia community project extracts structured, multilingual knowledge from Wikipedia and makes it freely available on the Web using Semantic Web and Linked Data technologies. The project extracts knowledge from 111 different language editions of Wikipedia. The largest DBpedia knowledge base which is extracted from the English edition of Wikipedia consists of over 400 million facts that describe 3.7 million things. The DBpedia knowledge bases that are extracted from the other 110 Wikipedia editions together consist of 1.46 billion facts and describe 10 million additional things. The DBpedia project maps Wikipedia infoboxes from 27 different language editions to a single shared ontology consisting of 320 classes and 1,650 properties. The mappings are created via a world-wide crowd-sourcing effort and enable knowledge from the different Wikipedia editions to be combined. The project publishes releases of all DBpedia knowledge bases for download and provides SPARQL query access to 14 out of the 111 language editions via a global network of local DBpedia chapters. In addition to the regular releases, the project maintains a live knowledge base which is updated whenever a page in Wikipedia changes. DBpedia sets 27 million RDF links pointing into over 30 external data sources and thus enables data from these sources to be used together with DBpedia data. Several hundred data sets on the Web publish RDF links pointing to DBpedia themselves and make DBpedia one of the central interlinking hubs in the Linked Open Data (LOD) cloud. In this system report, we give an overview of the DBpedia community project, including its architecture, technical implementation, maintenance, internationalisation, usage statistics and applications.

2,856 citations