scispace - formally typeset
Search or ask a question
Author

J. Zuniga Perez

Other affiliations: Linköping University
Bio: J. Zuniga Perez is an academic researcher from Leipzig University. The author has contributed to research in topics: Nanowire & Nanorod. The author has an hindex of 3, co-authored 3 publications receiving 600 citations. Previous affiliations of J. Zuniga Perez include Linköping University.

Papers
More filters
Journal ArticleDOI
TL;DR: Light emitting diodes based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed.
Abstract: Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal?organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour?liquid?solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro-?and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I?V characteristics of ZnO:P nanowire/ZnO:Ga p?n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.

606 citations

Journal ArticleDOI
TL;DR: In this article, the lateral density of ZnO nanowire arrays can be tuned from 1 to 10−2 μm−2 by introducing a ZnOs nucleation layer and optimizing the distance between the substrate and the ablated target.
Abstract: The lateral density of ZnO nanowire arrays grown with pulsed laser deposition (PLD) can be tuned from 1 to 10−2 μm−2 by introducing a ZnO nucleation layer and optimizing the distance between the substrate and the ablated target. High-density (∼10 μm−2) nanowire arrays can be grown on sapphire substrates with or without gold catalysts. However, if a ZnO wetting layer was adopted, the density of ZnO nanowires could be controlled with high reproducibility. The decreasing growth density is attributed to a competition between the two-dimensional film epitaxy and one-dimensional nanowire growth. The dependence of nanowire density on the substrate–target distance mainly arises from the expansion dynamics of the plasma plume and the chamber geometry. Using low-density nanowires as templates, a general PLD route was developed to grow radial nanowire heterostructures. Here we demonstrate MgZnO/ZnO/MgZnO nanowire quantum wells and ZnO/ZnO:P core–shell nanowire p–n junctions.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a brief overview of synthesis methods of ZnO nanostructures, with particular focus on the growth of perpendicular arrays of nanorods/nanowires which are of interest for optoelectronic device applications.

950 citations

Journal ArticleDOI
TL;DR: This review will discuss recent advances in important and/or controversial issues concerning ZnO properties and its applications, and areas where further improvements are needed.
Abstract: ZnO is a material which is of great interest for a variety of applications due to its unique properties and the availability of a variety of growth methods resulting in a number of different morphologies and a wide range of material properties of synthesized nanostructures. In this review, we will discuss recent advances in important and/or controversial issues concerning ZnO properties and its applications. We will also discuss areas where further improvements are needed, and in particular discuss the issues related to the environmental stability of ZnO and its implications on reproducibility of measurements and the toxicity of ZnO nanomaterials.

592 citations

Journal Article
TL;DR: In this article, a comprehensive review of the state-of-the-art research activities in the field of inorganic semiconductor nanostructures is presented, which mainly focuses on the most widely studied inorganic nano-structures, such as ZnO, ZnS, Si, WO3, AlN, SiC and their field-emission properties.
Abstract: Inorganic semiconductor nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating the size and dimensionality dependence of their properties for potential applications. The use of such nanostructures with tailored geometries as building blocks is also expected to play crucial roles in future nanodevices. Since the discovery of carbon nanotubes much attention has been paid to exploring the usage of inorganic semiconductor nanostructures as field-emitters due to their low work functions, high aspect ratios and mechanical stabilities, and high electrical and thermal conductivities. This article provides a comprehensive review of the state-of-the-art research activities in the field. It mainly focuses on the most widely studied inorganic nanostructures, such as ZnO, ZnS, Si, WO3, AlN, SiC, and their field-emission properties. We begin with a survey of inorganic semiconductor nanostructures and the field-emission principle, and then discuss the recent progresses on several kinds of important nanostructures and their field-emission characteristics in detail and overview some additional inorganic semiconducting nanomaterials in short. Finally, we conclude this review with some perspectives and outlook on the future developments in this area.

528 citations

Journal ArticleDOI
TL;DR: A review of publications on nanomaterials in the biennium 2008-2010 includes the most recent publications in risk assessment/toxicity, characterization and stability, toxicity, fate and transport of NMs in terrestrial ecosystems, and new ENMs.

522 citations

Journal ArticleDOI
04 Oct 2010-ACS Nano
TL;DR: The results show that the piezo-phototronic effect can enhance the detection sensitivity more than 5-fold for pW levels of light detection.
Abstract: We demonstrate the piezoelectric effect on the responsivity of a metalsemiconductormetal ZnO micro-/nanowire photodetector. The responsivity of the photodetector is respectively enhanced by 530%, 190%, 9%, and 15% upon 4.1 pW, 120.0 pW, 4.1 nW, and 180.4 nW UV light illumination onto the wire by introducing a0.36% compressive strain in the wire, which effectively tuned the Schottky barrier height at the contact by the produced local piezopotential. After a systematic study on the Schottky barrier height change with tuning of the strain and the excitation light intensity, an in-depth understanding is provided about the physical mechanism of the coupling of piezoelectric, optical, and semiconducting properties. Our results show that the piezo-phototronic effect can enhance the detection sensitivity more than 5-fold for pW levels of light detection.

441 citations