scispace - formally typeset
Search or ask a question
Author

Jacek A. Majewski

Bio: Jacek A. Majewski is an academic researcher from University of Warsaw. The author has contributed to research in topics: Density functional theory & Graphene. The author has an hindex of 32, co-authored 149 publications receiving 5332 citations. Previous affiliations of Jacek A. Majewski include Polish Academy of Sciences & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: The corresponding generalized Kohn-Sham eigenvalue gaps are shown to incorporate part of the discontinuity D xc of the exchange-correlation potential of standard KohnSham theory, leading to band gaps far better than those of local-density approximation.
Abstract: As an alternative to the standard Kohn-Sham procedure, other exact realizations of density-functional theory ~generalized Kohn-Sham methods! are presented. The corresponding generalized Kohn-Sham eigenvalue gaps are shown to incorporate part of the discontinuity D xc of the exchange-correlation potential of standard KohnSham theory. As an example, a generalized Kohn-Sham procedure splitting the exchange contribution to the total energy into a screened, nonlocal and a local density component is considered. This method leads to band gaps far better than those of local-density approximation and to good structural properties for the materials Si, Ge, GaAs, InP, and InSb.

1,003 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the macroscopic nonlinear pyroelectric polarization of wurtzite AlInN/GaN, InxGa1-xN and AlxIn1xN ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GAN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heter
Abstract: The macroscopic nonlinear pyroelectric polarization of wurtzite AlxGa1-xN, InxGa1-xN and AlxIn1-xN ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GaN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heterointerfaces. Models of polarization-induced effects in GaN-based devices so far have assumed that polarization in ternary nitride alloys can be calculated by a linear interpolation between the limiting values of the binary compounds. We present theoretical and experimental evidence that the macroscopic polarization in nitride alloys is a nonlinear function of strain and composition. We have applied these results to interpret experimental data obtained in a number of InGaN/GaN quantum wells?(QWs) as well as AlInN/GaN and AlGaN/GaN transistor structures. We find that the discrepancies between experiment and ab initio theory present so far are almost completely eliminated for the AlGaN/GaN-based heterostructures when the nonlinearity of polarization is accounted for. The realization of undoped lattice-matched AlInN/GaN heterostructures further allows us to prove the existence of a gradient in spontaneous polarization by the experimental observation of two-dimensional electron gases?(2DEGs). The confinement of 2DEGs in InGaN/GaN QWs in combination with the measured Stark shift of excitonic recombination is used to determine the polarization-induced electric fields in nanostructures. To facilitate inclusion of the predicted nonlinear polarization in future simulations, we give an explicit prescription to calculate polarization-induced electric fields and bound interface charges for arbitrary composition in each of the ternary III-N alloys. In addition, the theoretical and experimental results presented here allow a detailed comparison of the predicted electric fields and bound interface charges with the measured Stark shift and the sheet carrier concentration of polarization-induced 2DEGs. This comparison provides an insight into the reliability of the calculated nonlinear piezoelectric and spontaneous polarization of group III nitride ternary alloys.

975 citations

Journal ArticleDOI
TL;DR: In this paper, the Kohn-Sham method is used to calculate lattice constants, cohesive energies, Kohn Sham eigenvalues, dielectric functions, and effective masses of various zinc-blende semiconductors (Si, Ge, C, SiC, GaAs, AlAs, GaN, and AlN).
Abstract: We present a Kohn-Sham method that allows one to treat exchange interactions exactly within density-functional theory. The method is used to calculate lattice constants, cohesive energies, Kohn-Sham eigenvalues, dielectric functions, and effective masses of various zinc-blende semiconductors (Si, Ge, C, SiC, GaAs, AlAs, GaN, and AlN). The results are compared with values obtained within the local-density approximation, generalized gradient approximations, the Krieger-Li-Iafrate approximation for the Kohn-Sham exchange potential, and the Hartree-Fock method. We find that the exact exchange formalism, augmented by local density or generalized gradient correlations, yields both structural and optical properties in excellent agreement with experiment. Exact exchange-only calculations are found to lead to densities and energies that are close to Hartree-Fock values but to eigenvalue gaps that agree with experiment within 0.2 eV. The generalized gradient approximations for exchange yield energies that are much improved compared to local-density values. The exact exchange contribution to the discontinuity of the exchange-correlation potential is computed and discussed in the context of the band-gap problem.

290 citations

Journal ArticleDOI
TL;DR: In this paper, a new Kohn-Sham method that treats exchange interactions within density functional theory exactly is applied to Si, diamond, GaN, and InN and shows that the exchange contribution to the derivative discontinuity of the exchange-correlation potential is very large (of the order of 5-10 eV).
Abstract: A new Kohn-Sham method that treats exchange interactions within density functional theory exactly is applied to Si, diamond, GaN, and InN. The exact local exchange potential leads to significantly increased band gaps that are in good agreement with experimental data. Generalized gradient approximations yield exchange energies that are much closer to the exact values than those predicted by the local density approximation. The exchange contribution to the derivative discontinuity of the exchange-correlation potential is found to be very large (of the order of 5--10 eV).

275 citations

Journal ArticleDOI
TL;DR: It is shown that the use of neuromuscular blocking drugs in general anaesthesia is associated with an increased risk of postoperative pulmonary complications, and Anaesthetists must balance the potential benefits of neurmuscular blockade against the increasedrisk of postoperatively pulmonary complications.

226 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book
01 Jan 2004
TL;DR: In this paper, the Kohn-Sham ansatz is used to solve the problem of determining the electronic structure of atoms, and the three basic methods for determining electronic structure are presented.
Abstract: Preface Acknowledgements Notation Part I. Overview and Background Topics: 1. Introduction 2. Overview 3. Theoretical background 4. Periodic solids and electron bands 5. Uniform electron gas and simple metals Part II. Density Functional Theory: 6. Density functional theory: foundations 7. The Kohn-Sham ansatz 8. Functionals for exchange and correlation 9. Solving the Kohn-Sham equations Part III. Important Preliminaries on Atoms: 10. Electronic structure of atoms 11. Pseudopotentials Part IV. Determination of Electronic Structure, The Three Basic Methods: 12. Plane waves and grids: basics 13. Plane waves and grids: full calculations 14. Localized orbitals: tight binding 15. Localized orbitals: full calculations 16. Augmented functions: APW, KKR, MTO 17. Augmented functions: linear methods Part V. Predicting Properties of Matter from Electronic Structure - Recent Developments: 18. Quantum molecular dynamics (QMD) 19. Response functions: photons, magnons ... 20. Excitation spectra and optical properties 21. Wannier functions 22. Polarization, localization and Berry's phases 23. Locality and linear scaling O (N) methods 24. Where to find more Appendixes References Index.

2,690 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the state-of-the-art computational methodology for calculating the structure and energetics of point defects and impurities in semiconductors and pay particular attention to computational aspects which are unique to defects or impurities, such as how to deal with charge states and how to describe and interpret transition levels.
Abstract: First-principles calculations have evolved from mere aids in explaining and supporting experiments to powerful tools for predicting new materials and their properties. In the first part of this review we describe the state-of-the-art computational methodology for calculating the structure and energetics of point defects and impurities in semiconductors. We will pay particular attention to computational aspects which are unique to defects or impurities, such as how to deal with charge states and how to describe and interpret transition levels. In the second part of the review we will illustrate these capabilities with examples for defects and impurities in nitride semiconductors. Point defects have traditionally been considered to play a major role in wide-band-gap semiconductors, and first-principles calculations have been particularly helpful in elucidating the issues. Specifically, calculations have shown that the unintentional n-type conductivity that has often been observed in as-grown GaN cannot be a...

2,557 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations