scispace - formally typeset
Search or ask a question
Author

Jack A. Roth

Bio: Jack A. Roth is an academic researcher from University of Texas MD Anderson Cancer Center. The author has contributed to research in topics: Lung cancer & Cancer. The author has an hindex of 110, co-authored 764 publications receiving 51306 citations. Previous affiliations of Jack A. Roth include University of Texas System & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
Li Ding1, Gad Getz2, David A. Wheeler3, Elaine R. Mardis1, Michael D. McLellan1, Kristian Cibulskis2, Carrie Sougnez2, Heidi Greulich4, Heidi Greulich2, Donna M. Muzny3, Margaret Morgan3, Lucinda Fulton1, Robert S. Fulton1, Qunyuan Zhang1, Michael C. Wendl1, Michael S. Lawrence2, David E. Larson1, Ken Chen1, David J. Dooling1, Aniko Sabo3, Alicia Hawes3, Hua Shen3, Shalini N. Jhangiani3, Lora Lewis3, Otis Hall3, Yiming Zhu3, Tittu Mathew3, Yanru Ren3, Jiqiang Yao3, Steven E. Scherer3, Kerstin Clerc3, Ginger A. Metcalf3, Brian Ng3, Aleksandar Milosavljevic3, Manuel L. Gonzalez-Garay3, John R. Osborne1, Rick Meyer1, Xiaoqi Shi1, Yuzhu Tang1, Daniel C. Koboldt1, Ling Lin1, Rachel Abbott1, Tracie L. Miner1, Craig Pohl1, Ginger A. Fewell1, Carrie A. Haipek1, Heather Schmidt1, Brian H. Dunford-Shore1, Aldi T. Kraja1, Seth D. Crosby1, Christopher S. Sawyer1, Tammi L. Vickery1, Sacha N. Sander1, Jody S. Robinson1, Wendy Winckler2, Wendy Winckler4, Jennifer Baldwin2, Lucian R. Chirieac4, Amit Dutt2, Amit Dutt4, Timothy Fennell2, Megan Hanna2, Megan Hanna4, Bruce E. Johnson4, Robert C. Onofrio2, Roman K. Thomas5, Giovanni Tonon4, Barbara A. Weir2, Barbara A. Weir4, Xiaojun Zhao2, Xiaojun Zhao4, Liuda Ziaugra2, Michael C. Zody2, Thomas J. Giordano6, Mark B. Orringer6, Jack A. Roth, Margaret R. Spitz7, Ignacio I. Wistuba, Bradley A. Ozenberger8, Peter J. Good8, Andrew C. Chang6, David G. Beer6, Mark A. Watson1, Marc Ladanyi9, Stephen R. Broderick9, Akihiko Yoshizawa9, William D. Travis9, William Pao9, Michael A. Province1, George M. Weinstock1, Harold E. Varmus9, Stacey Gabriel2, Eric S. Lander2, Richard A. Gibbs3, Matthew Meyerson2, Matthew Meyerson4, Richard K. Wilson1 
23 Oct 2008-Nature
TL;DR: Somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B are found.
Abstract: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.

2,615 citations

Journal ArticleDOI
TL;DR: EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers, and can lead to lung cancer pathogenesis.
Abstract: Background: Mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR) gene in lung cancers are associated with increased sensitivity of these cancers to drugs that inhibit EGFR kinase activity. However, the role of such mutations in the pathogenesis of lung cancers is unclear. Methods: We sequenced exons 18-21 of the EGFR TK domain from genomic DNA isolated from 617 non-small-cell lung cancers (NSCLCs) and 524 normal lung tissue samples from the same patients and 36 neuroendocrine lung tumors collected from patients in Japan, Taiwan, the United States, and Australia and from 243 other epithelial cancers. Mutation status was compared with clinicopathologic features and with the presence of mutations in KRAS, a gene in the EGFR signaling pathway that is also frequently mutated in lung cancers. All statistical tests were two sided. Results: We detected a total of 134 EGFR TK domain mutations in 130 (21%) of the 617 NSCLCs but not in any of the other carcinomas, nor in nonmalignant lung tissue from the same patients. In NSCLC patients, EGFR TK domain mutations were statistically significantly more frequent in never smokers than ever smokers (51% versus 10%), in adenocarcinomas versus cancer of other histologies (40% versus 3%), in patients of East Asian ethnicity versus other ethnicities (30% versus 8%), and in females versus males (42% versus 14%; all P <.001). EGFR TK domain mutation status was not associated with patient age at diagnosis, clinical stage, the presence of bronchioloalveolar histologic features, or overall survival. The EGFR TK domain mutations we detected were of three common types: in-frame deletions in exon 19, single missense mutations in exon 21, and in-frame duplications/insertions in exon 20. Rare missense mutations were also detected in exons 18, 20, and 21. KRAS gene mutations were present in 50 (8%) of the 617 NSCLCs but not in any tumors with an EGFR TK domain mutation. Conclusions: Mutations in either the EGFR TK domain or the KRAS gene can lead to lung cancer pathogenesis. EGFR TK domain mutations are the first molecular change known to occur specifically in never smokers.

2,229 citations

Journal ArticleDOI
TL;DR: Preoperative chemotherapy with a combination of cisplatin and fluorouracil did not improve overall survival among patients with epidermoid cancer or adenocarcinoma of the esophagus.
Abstract: Background We performed a multi-institutional randomized trial comparing preoperative chemotherapy followed by surgery with surgery alone for patients with local and operable esophageal cancer. Methods Preoperative chemotherapy for patients randomly assigned to the chemotherapy group included three cycles of cisplatin and fluorouracil. Surgery was performed two to four weeks after the completion of the third cycle; patients also received two additional cycles of chemotherapy after the operation. Patients randomly assigned to the immediate-surgery group underwent the same surgical procedure. The main end point was overall survival. Results Of the 440 eligible patients with adequate data, 213 were assigned to receive preoperative chemotherapy and 227 to undergo immediate surgery. After a median possible study time of 55.4 months, there were no significant differences between the two groups in median survival: 14.9 months for the patients who received preoperative chemotherapy and 16.1 months for those who u...

1,280 citations

Journal ArticleDOI
TL;DR: Overall survival for SABR versus surgery by pooling data from the STARS and ROSEL trials was 95% (95% CI 85-100) in the S ABR group compared with 79% in the surgery group, and recurrence-free survival at 3 years was 86% ( 95% CI 74-100).
Abstract: Summary Background The standard of care for operable, stage I, non-small-cell lung cancer (NSCLC) is lobectomy with mediastinal lymph node dissection or sampling. Stereotactic ablative radiotherapy (SABR) for inoperable stage I NSCLC has shown promising results, but two independent, randomised, phase 3 trials of SABR in patients with operable stage I NSCLC (STARS and ROSEL) closed early due to slow accrual. We aimed to assess overall survival for SABR versus surgery by pooling data from these trials. Methods Eligible patients in the STARS and ROSEL studies were those with clinical T1–2a ( Findings 58 patients were enrolled and randomly assigned (31 to SABR and 27 to surgery). Median follow-up was 40·2 months (IQR 23·0–47·3) for the SABR group and 35·4 months (18·9–40·7) for the surgery group. Six patients in the surgery group died compared with one patient in the SABR group. Estimated overall survival at 3 years was 95% (95% CI 85–100) in the SABR group compared with 79% (64–97) in the surgery group (hazard ratio [HR] 0·14 [95% CI 0·017–1·190], log-rank p=0·037). Recurrence-free survival at 3 years was 86% (95% CI 74–100) in the SABR group and 80% (65–97) in the surgery group (HR 0·69 [95% CI 0·21–2·29], log-rank p=0·54). In the surgery group, one patient had regional nodal recurrence and two had distant metastases; in the SABR group, one patient had local recurrence, four had regional nodal recurrence, and one had distant metastases. Three (10%) patients in the SABR group had grade 3 treatment-related adverse events (three [10%] chest wall pain, two [6%] dyspnoea or cough, and one [3%] fatigue and rib fracture). No patients given SABR had grade 4 events or treatment-related death. In the surgery group, one (4%) patient died of surgical complications and 12 (44%) patients had grade 3–4 treatment-related adverse events. Grade 3 events occurring in more than one patient in the surgery group were dyspnoea (four [15%] patients), chest pain (four [15%] patients), and lung infections (two [7%]). Interpretation SABR could be an option for treating operable stage I NSCLC. Because of the small patient sample size and short follow-up, additional randomised studies comparing SABR with surgery in operable patients are warranted. Funding Accuray Inc, Netherlands Organisation for Health Research and Development, NCI Cancer Center Support, NCI Clinical and Translational Science Award.

1,151 citations

Journal Article
TL;DR: Three BRAF mutations identified in this study are novel, altering residues important in AKT-mediated BRAF phosphorylation and suggesting that disruption ofAKT-induced BRAF inhibition can play a role in malignant transformation, first report of mutations documenting this interaction in human cancers.
Abstract: BRAF encodes a RAS-regulated kinase that mediates cell growth and malignant transformation kinase pathway activation. Recently, we have identified activating BRAF mutations in 66% of melanomas and a smaller percentage of many other human cancers. To determine whether BRAF mutations account for the MAP kinase pathway activation common in non-small cell lung carcinomas (NSCLCs) and to extend the initial findings in melanoma, we screened DNA from 179 NSCLCs and 35 melanomas for BRAF mutations (exons 11 and 15). We identified BRAF mutations in 5 NSCLCs (3%; one V599 and four non-V599) and 22 melanomas (63%; 21 V599 and 1 non-V599). Three BRAF mutations identified in this study are novel, altering residues important in AKT-mediated BRAF phosphorylation and suggesting that disruption of AKT-induced BRAF inhibition can play a role in malignant transformation. To our knowledge, this is the first report of mutations documenting this interaction in human cancers. Although >90% of BRAF mutations in melanoma involve codon 599 (57 of 60), 8 of 9 BRAF mutations reported to date in NSCLC are non-V599 (89%; P < 10(-7)), strongly suggesting that BRAF mutations in NSCLC are qualitatively different from those in melanoma; thus, there may be therapeutic differences between lung cancer and melanoma in response to RAF inhibitors. Although uncommon, BRAF mutations in human lung cancers may identify a subset of tumors sensitive to targeted therapy.

1,097 citations


Cited by
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity.
Abstract: We analysed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-phase protein arrays. Our ability to integrate information across platforms provided key insights into previously defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at >10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the luminal A subtype. We identified two novel protein-expression-defined subgroups, possibly produced by stromal/microenvironmental elements, and integrated analyses identified specific signalling pathways dominant in each molecular subtype including a HER2/phosphorylated HER2/EGFR/phosphorylated EGFR signature within the HER2-enriched expression subtype. Comparison of basal-like breast tumours with high-grade serous ovarian tumours showed many molecular commonalities, indicating a related aetiology and similar therapeutic opportunities. The biological finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biological subtypes of breast cancer.

9,355 citations

Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati1, Sam Behjati5, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli1, Niccolo Bolli5, Åke Borg2, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk15, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog17, Stian Knappskog11, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson20, Andrea L. Richardson22, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi15, Jessica Zucman-Rossi14, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson15, Matthew Meyerson20, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister16, Stefan M. Pfister11, Peter J. Campbell29, Peter J. Campbell30, Peter J. Campbell3, Michael R. Stratton3, Michael R. Stratton31 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
TL;DR: Screening with the use of low-dose CT reduces mortality from lung cancer, as compared with the radiography group, and the rate of death from any cause was reduced.
Abstract: Background The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. Methods From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. Results The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Conclusions Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).

7,710 citations

Journal ArticleDOI
TL;DR: Gefit inib is superior to carboplatin-paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia and the presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib.
Abstract: METHODS In this phase 3, open-label study, we randomly assigned previously untreated patients in East Asia who had advanced pulmonary adenocarcinoma and who were nonsmokers or former light smokers to receive gefitinib (250 mg per day) (609 patients) or carboplatin (at a dose calculated to produce an area under the curve of 5 or 6 mg per milliliter per minute) plus paclitaxel (200 mg per square meter of body-surface area) (608 patients). The primary end point was progression-free survival. RESULTS The 12-month rates of progression-free survival were 24.9% with gefitinib and 6.7% with carboplatin–paclitaxel. The study met its primary objective of showing the noninferiority of gefitinib and also showed its superiority, as compared with carboplatin– paclitaxel, with respect to progression-free survival in the intention-to-treat population (hazard ratio for progression or death, 0.74; 95% confidence interval [CI], 0.65 to 0.85; P<0.001). In the subgroup of 261 patients who were positive for the epidermal growth factor receptor gene (EGFR) mutation, progression-free survival was significantly longer among those who received gefitinib than among those who received carboplatin–paclitaxel (hazard ratio for progression or death, 0.48; 95% CI, 0.36 to 0.64; P<0.001), whereas in the subgroup of 176 patients who were negative for the mutation, progression-free survival was significantly longer among those who received carboplatin–paclitaxel (hazard ratio for progression or death with gefitinib, 2.85; 95% CI, 2.05 to 3.98; P<0.001). The most common adverse events were rash or acne (in 66.2% of patients) and diarrhea (46.6%) in the gefitinib group and neurotoxic effects (69.9%), neutropenia (67.1%), and alopecia (58.4%) in the carboplatin–paclitaxel group. CONCLUSIONS Gefitinib is superior to carboplatin–paclitaxel as an initial treatment for pulmonary adenocarcinoma among nonsmokers or former light smokers in East Asia. The presence in the tumor of a mutation of the EGFR gene is a strong predictor of a better outcome with gefitinib. (ClinicalTrials.gov number, NCT00322452.)

7,246 citations

Journal ArticleDOI
Debra A. Bell1, Andrew Berchuck2, Michael J. Birrer3, Jeremy Chien1  +282 moreInstitutions (35)
30 Jun 2011-Nature
TL;DR: It is reported that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1,BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes.
Abstract: A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

5,878 citations