scispace - formally typeset
Search or ask a question
Author

Jack R. Vinson

Bio: Jack R. Vinson is an academic researcher from University of Delaware. The author has contributed to research in topics: Shell (structure) & Sandwich-structured composite. The author has an hindex of 30, co-authored 168 publications receiving 8303 citations.


Papers
More filters
Proceedings ArticleDOI
11 Jun 2001
TL;DR: In this paper, a high-order sandwich theory formulation is presented, which enables the analysis of sandwich beams or plates with variable core thickness and faces are assumed to be of constant thickness and may be inclined arbitrary angles α 1 and α 2, respectively, relative to the sandwich panel reference plane.
Abstract: A newly developed high-order sandwich theory formulation is presented, which enables the analysis of sandwich beams or plates with variable core thickness. The faces are assumed to be of constant thickness and may be inclined arbitrary angles α 1 and α 2 , respectively, relative to the sandwich panel reference plane. The core thickness may change linearly over the length of the sandwich panel. The core is modeled as a specially orthotropic solid possessing stiffness in the out-of-plane direction only, thus including the transverse core flexibility in the modeling. The faces are modeled as laminated beams or plates including bending-stretching coupling and transverse shear effects. To validate the proposed high-order theory, the numerical results are compared with results obtained from finite element analysis, and a close match is observed. Furthermore, to demonstrate the features of the developed high-order sandwich theory formulation, numerical results obtained for two different types of tapered sandwich beams in three-point bending are presented. The characteristics of the elastic responses of the two sandwich panel configurations are compared with special emphasis on the complicated interaction between the faces through the core material. The analyses show that severe localized bending effects are displayed in the vicinity of load introduction and support points and in the vicinity of points/locations of abrupt geometric changes. These localized bending effects induce severe stress concentrations and may severely endanger the structural integrity of the sandwich panels under consideration.

2 citations

Proceedings ArticleDOI
01 Jan 2002
TL;DR: In this paper, the authors used the Johnson-Cook model for composite materials to model the dynamic properties of composite materials at expected temperatures when the loading conditions involve high strain rates and extreme temperatures.
Abstract: Composite materials are used in a wide variety of low temperature applications because of their unique and highly tailorable properties. These low temperature applications of composites include their use in Arctic environments and most of them involve dynamic loads, for example, spacecraft applications where they use cryogenic engines, hypervelocity impact situations at very high altitudes, civil engineering applications in extreme cold regions, and offshore structures in cold regions. The U.S. Navy stated that under certain conditions naval vessels might encounter strain rates up to 1200/sec. Because the dynamic properties of composite materials may vary widely with both strain rates and temperature, it is important to use the dynamic properties at the expected temperatures when the loading conditions involve high strain rates and extreme temperatures. Very few materials have been characterized at high strain rates even at room temperature. Still less effort has been spent in trying to model the high strain rate properties to develop a predictive capability at room temperature. It has been hoped that earlier modeling for metals, such as Johnson and Cook [1], and Zerilli and Armstrong [2] might be used for composite materials. The Johnson-Cook model was modified by Weeks and Sun [3] for composite materials. Other recent modeling research has been performed by Theruppukuzki and Sun [4], Hsiao, Daniel and Cordes [5] and Tsai and Sun [6]. Woldesenbet and Vinson [7] have characterized the high strain rate and fiber orientation effects on one typical graphite/epoxy composite. Most of these characterizations model ultimate strengths only.Copyright © 2002 by ASME

2 citations

Proceedings ArticleDOI
07 Apr 1997

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Abstract: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

4,920 citations

Journal ArticleDOI
TL;DR: In this paper, a scaling analysis is performed to demonstrate that the effectiveness of actuators is independent of the size of the structure and evaluate various piezoelectric materials based on their effectiveness in transmitting strain to the substructure.
Abstract: This work presents the analytic and experimental development of piezoelectric actuators as elements of intelligent structures, i.e., structures with highly distributed actuators, sensors, and processing networks. Static and dynamic analytic models are derived for segmented piezoelectric actuators that are either bonded to an elastic substructure or embedded in a laminated composite. These models lead to the ability to predict, a priori, the response of the structural member to a command voltage applied to the piezoelectric and give guidance as to the optimal location for actuator placement. A scaling analysis is performed to demonstrate that the effectiveness of piezoelectric actuators is independent of the size of the structure and to evaluate various piezoelectric materials based on their effectiveness in transmitting strain to the substructure. Three test specimens of cantilevered beams were constructed: an aluminum beam with surface-bonded actuators, a glass/epoxy beam with embedded actuators, and a graphite/epoxy beam with embedded actuators. The actuators were used to excite steady-state resonant vibrations in the cantilevered beams. The response of the specimens compared well with those predicted by the analytic models. Static tensile tests performed on glass/epoxy laminates indicated that the embedded actuator reduced the ultimate strength of the laminate by 20%, while not significantly affecting the global elastic modulus of the specimen.

2,719 citations

Journal ArticleDOI
TL;DR: An overview of recent progress in the area of cellulose nanofibre-based nanocomposites is given in this article, with particular emphasis on applications, such as reinforced adhesives, to make optically transparent paper for electronic displays, to create DNA-hybrid materials, to generate hierarchical composites and for use in foams, aerogels and starch nanocom composites.
Abstract: This paper provides an overview of recent progress made in the area of cellulose nanofibre-based nanocomposites. An introduction into the methods used to isolate cellulose nanofibres (nanowhiskers, nanofibrils) is given, with details of their structure. Following this, the article is split into sections dealing with processing and characterisation of cellulose nanocomposites and new developments in the area, with particular emphasis on applications. The types of cellulose nanofibres covered are those extracted from plants by acid hydrolysis (nanowhiskers), mechanical treatment and those that occur naturally (tunicate nanowhiskers) or under culturing conditions (bacterial cellulose nanofibrils). Research highlighted in the article are the use of cellulose nanowhiskers for shape memory nanocomposites, analysis of the interfacial properties of cellulose nanowhisker and nanofibril-based composites using Raman spectroscopy, switchable interfaces that mimic sea cucumbers, polymerisation from the surface of cellulose nanowhiskers by atom transfer radical polymerisation and ring opening polymerisation, and methods to analyse the dispersion of nanowhiskers. The applications and new advances covered in this review are the use of cellulose nanofibres to reinforce adhesives, to make optically transparent paper for electronic displays, to create DNA-hybrid materials, to generate hierarchical composites and for use in foams, aerogels and starch nanocomposites and the use of all-cellulose nanocomposites for enhanced coupling between matrix and fibre. A comprehensive coverage of the literature is given and some suggestions on where the field is likely to advance in the future are discussed.

2,214 citations

Journal ArticleDOI
TL;DR: The most important members of the hexaferrite family are shown below, where Me = a small 2+ ion such as cobalt, nickel, or zinc, and Ba can be substituted by Sr: • M-type ferrites, such as BaFe12O19 (BaM or barium ferrite), SrFe 12O19(SrM or strontium ferite), and cobalt-titanium substituted M ferrite, Sr- or BaFe 12−2xCoxTixO19, or CoTiM as discussed by the authors.

1,855 citations

Journal ArticleDOI
TL;DR: The numerical implementation of the model of brittle fracture developed in Francfort and Marigo (1998) is presented in this paper, where various computational methods based on variational approximations of the original functional are proposed.
Abstract: The numerical implementation of the model of brittle fracture developed in Francfort and Marigo (1998. J. Mech. Phys. Solids 46 (8), 1319–1342) is presented. Various computational methods based on variational approximations of the original functional are proposed. They are tested on several antiplanar and planar examples that are beyond the reach of the classical computational tools of fracture mechanics.

1,617 citations